
Introducción a PowerShell

Qué es?

• Un entorno interactivo orientado a objetos que usa programas
llamados cmdlets para tareas de configuración y administración.

Qué me permite hacer?

• Mejora de la gestión y automatización

• Gestión en tiempo real

• Gestión a gran escala

• Protegido por defecto

• Evita errores de administradores y usuarios no intencionados

• Sin ejecución de script

• .ps1 extensión asociada a notepad

• Debe escribir la ruta para ejecutar un script

Versiones

• Instalar Windows PowerShell 5.0

• • Windows 10 or Windows Server 2016

• • Parte de Windows Management Framework (WMF) 5.0 incluído en
Windows

INTRODUCCIÓN – CONCEPTOS BÁSICOS

• Familiarizándonos con la consola

• Cmdlets : Verbo – Sustantivo

• ¡Los comandos nativos funcionan!

• – - Ping, IPConfig, calc, notepad, mspaint

• cls - Clear-Host

• cd - Set-Location

• dir, ls - Get-Childitem

• type, cat - Get-Content

• Copy, cp - Copy-item

Ayuda

• Get-Help, help y man

• Help <cmdlet>

• Help *parcial*

• Help <cmdlet> -Full

• Help <cmdlet> -Online

• Help <cmdlet> -ShowWindow

• Help <cmdlet> -Examples

• Get-Help About_*

• Get-Help Get-Help –Full

• Esta descripción te informa sobre la utilización del parámetro. Así, te
indica que no es un parámetro requerido, que es independiente de la
posición, que no se puede utilizar encadenado a otros comandos, es
decir, no se puede utilizar con pipes o tuberías.

GET-COMMAND

Get-Member (gm)
TypeName es un nombre

único asignado por Windows
Muestra las propiedades y

métodos de un objeto
Las propiedades son

columnas de información del
objeto

Los métodos son las
acciones que puede realizar
el objeto

• ¿PUEDO ENCADENAR CUALQUIER COMANDO?

• No. No todos los comandos se pueden encadenar. Y, ¿como puedo
saber si se puede encadenar un comando?.

• Para esto tienes que utilizar la ayuda. En concreto tienes que utilizar
la opción -Full y fijarte en las secciones INPUTS y OUTPUTS donde te
indica si admite la posibilidad de encadenar y que tipos de datos
admite.

Errores

Ejecutar scripts

Exportar csv

cmdlets

• Son el corazón del funcionamiento de PowerShell

• Se pueden importar nuevos cmdlets con el uso de módulos

• Normalmente se pueden encadenar en tuberías

• Su nomenclatura suele ser “VerboNombre”

• La lista de verbos recomendados se puede consultar con “Get-Verb”

Cmdlets interesantes

COMMANDLETS PELIGROSOS…

OBJETOS

• Todo en PowerShell son objetos

• Los objetos pueden tener propiedades y/o métodos

• Los resultados de un cmdlet pueden moverse entre cmdlets

• Generalmente se usa la técnica de inclusion (Un objeto tiene otros
objetos) para representar datos más complejos

• Podemos incluirlos en tuberías

• Get-Member (gm)

• TypeName es un nombre
único asignado por Windows

• Muestra las propiedades y
métodos de un objeto

• Las propiedades son
columnas de información del
objeto

• Los métodos son las
acciones que puede realizar
el objeto

• Seleccionar objetos:

• Select-Object selecciona propiedades

• Usamos Get-Member para ver que propiedades podemos seleccionar

• -first y -last restringe el número de filas mostradas

• GET-MEMBER

• cmdlet New-Item que te permite entre otras cosas crear archivos. Así, lo
primero es crear un archivo que se va a llamar ejemplo.txt. Para esto,
ejecuta la siguiente instrucción,

• New-Item -Name ejemplo.txt -ItemType File

• puedes confirmar su existencia, verificando la propiedad Exists,

• (Get-Item ejemplo.txt).Exists
• Si quisieras ver todas las propiedades y métodos de tu nuevo objeto

archivo llamado ejemplo.txt. Tienes que ejecutar la siguiente instrucción,

• Get-Item ejemplo.txt | Get-Member

• PROPIEDADES

• Si quieres mostrar solo las propiedades:

• Get-Item ejemplo.txt | Get-Member -MemberType Property

Métodos

• Ahora si lo que quisieras ver son los métodos que tiene tu archivo
ejemplo.txt, lo que tienes que hacer es ejecutar la siguiente
instrucción,

• Get-Item ejemplo.txt | Get-Member -MemberType Method

Ejemplos

• (Get-Item ejemplo.txt).CopyTo("ejemplo2.txt") copia tu primer
archivo creado con PowerShell, ejemplo.txt, en tu segundo archivo
ejemplo2.txt.

• (Get-Item ejemplo.txt).Delete() borra el archivo ejemplo.txt.

• (Get-Item ejemplo.txt).GetHashCode() te devuelve el código hash del
archivo ejemplo.txt

VARIABLES EN POWERSHELL

• Una variable, es un espacio en memoria donde guardar información.
Un espacio con un nombre. Dado que es necesario tener identificado
a ese espacio para poder guardar o sacar esa información.

• En el caso de PowerShell la forma de identificar esos espacios en
memoria es mediante una cadena de texto precedida por $. Por
ejemplo, $variable.

• Para definir una variable es tan sencillo como hacer lo siguiente,

• $variable = 1

• De la misma manera puedes crear una variable que contenga una cadena
de texto,

• $variable = "Hola mundo"

• O incluso que contenga un vector de enteros.

• $variable = 1, 2, 3

• puedes guardar el resultado de la ejecución de un cmdlet en una variable
para utilizarlo posteriormente. Esto es especialmente cómodo cuando el
resultado es un objeto y quieres utilizar alguno de los métodos del objeto.
Por ejemplo, puedes guardar todos los procesos que están corriendo en tu
sistema utilizando la siguiente instrucción,

• $procesos = Get-Process
• Si quieres obtener el primero de los procesos, dado que se trata de un

vector de procesos, tan solo tienes que ejecutar
• Write-Output $procesos[0]

• si quisieras saber cuando comenzó ese proceso, tan solo tienes que
ejecutar,

• echo $procesos[0].StartTime

OPERACIONES CON VARIABLES EN
POWERSHELL
• Eliminar contenido:

• Clear-Variable -Name procesos

• O bien directamente asignado $null a la variable

• $procesos = $null

• Eliminar variable

• Remove-Variable -Name cupsd

TIPOS DE VARIABLES

• PS no es tipado.

• Se pueden crear tipos:

• tienes que preceder al nombre de la variable del tipo que le quieres
asignar entre corchetes. Por ejemplo,

• [double]$variable = 3.1415;

• Eso si, la variable $variable no debe estar definida, o debe estar a
$null

Comillas

• PS> Write-Output "La variable contiene $variable"

• La variable contiene 3.141592

• PS> Write-Output 'La variable contiene $variable'

• La variable contiene $variable

• PS> $variable = 3.141592

• PS> Write-Output "La variable `$variable contiene $variable"

• La variable $variable contiene 3.141592

ARRAY

• $a = @()

• los arrays tienen un tamaño fijo. (Para incremental usar ARRAYLIST)

• Puedes conocer el número de elementos de un array, utilizando la propiedad Count, como en el siguiente
ejemplo,

• Otra forma

• PS> $array = 1..3

• PS> Write-Output $array

• 1

• 2

• 3

• Write-Output $a.Count

Acciones ARRAY

• ACCEDIENDO A LOS ELEMENTOS DEL ARRAY

• PS> $a = 1, 2, 3, 4

• PS> $a[0]

• 1

• El primer elemento de un array es el elemento 0.

• PS> $a = 'uno', 'dos', 'tres', 'cuatro', 'cinco'

• PS> Write-Output $a[0, 1, 2]

• uno

• dos

• tres

• PS> Write-Output $a[0..2]

• uno

• dos

• Tres

• Pero no solo puedes obtener los valores en sentido directo, sino que también los puedes obtener en sentido inverso ¿como?

• PS> Write-Output $a[2..0]

• tres

• dos

• Uno

• Ultimo elemento

• PS> Write-Output $a[-1]

• cinco

• array, tiene algunos métodos muy interesantes, como son,

• Clear para eliminar el contenido, como por ejemplo $a.Clear()

• Contains para saber si si un elemento pertence al array,
$a.Contains('cinco').

• GetLowerBound permite obtener el índice mas bajo del array, como
por ejemplo, $a.GetLowerBound(0), que nos devolverá en este caso
0.

• GetUpperBound igual que el anterior pero para obtener el índice
mayor. En nuestro ejemplo sería $a.GetUpperBound(0) y el resultado
sería 4.

• IndexOf, te permite obtener el índice de un elemento, por ejemplo,
$a.IndexOf('cuatro') devolverá 3.

Movernos : FOREACH

• PS> $a.ForEach({Write-Output $PSItem})

• uno

• dos

• tres

• cuatro

• cinco

• Evidentemente para esto no tiene mucho sentido, pero ¿que tal esto?

• PS> $a = 0, 1, 2

• PS> $a.ForEach({$PSItem * 3})

• 0

• 3

• 6

WHERE

• Este método te permite filtrar los elementos del array y obtener un
nuevo array, con solo aquellos elementos que cumplen la condición
que hayas establecido. Por ejemplo,

• PS> $a = 0, 1, 2, 3, 4, 5, 6

• PS> $a.Where({$PSItem > 4})

• 5

• 6

OPERADORES

Aritméticos

Lógicos

IF

• $valor = "Hola"

• if ($valor -eq "Hola"){

• Write-Output "Son iguales"

• }else{

• Write-Output "Son distintos"

• }

• $valor = "Hola"

• if ($valor -eq "Hola"){

• Write-Output "es igual a Hola"

• }elseif($valor -eq "Adios"){

• Write-Output "es igual a Adios"

• }else{

• Write-Output "Ni es igual a Hola ni a Adios"

• }

Switch

• $valor = "Hola"

• switch($valor){

• "Hola"{Write-Output "Es igual a Hola"}

• "Adios"{Write-Output "Es igual a Adios"}

• default{Write-Output "No se parece a nada

• }

Bucles

• Get-Process, si quieres conocer el nombre de cada uno de los
procesos que están corriendo en tu sistema, lo podrías hacer entre
otras formas de la siguiente,

• $ps = Get-Process

• for($i=0; $i -lt $ps.Length; $i++){

• Write-Output $ps[$i].Name

• }

Ejecución de scripts

• A partir de PowerShell 3.0, puede ejecutar scripts desde Explorador
de archivos.

• Para usar la característica "Ejecutar con PowerShell":

• Ejecute Explorador de archivos, haga clic con el botón derecho en el
nombre de archivo del script y seleccione "Ejecutar con PowerShell".

Powershell ISE

• powershell ise

• Para escribir un script, abra un nuevo archivo en un editor de texto, escriba
los comandos y guárdelos en un archivo con un nombre de archivo válido
con la extensión de .ps1 archivo.

• El ejemplo siguiente es un script sencillo que obtiene los servicios que se
ejecutan en el sistema actual y los guarda en un archivo de registro. El
nombre de archivo de registro se crea a partir de la fecha actual.

• $date = (get-date).dayofyear

• get-service | out-file "$date.log"

Ejecución de scripts en otros equipos

• se el parámetro FilePath del Invoke-Command cmdlet .

• Escriba la ruta de acceso y el nombre de archivo del script como valor del
parámetro FilePath . El script debe encontrarse en el equipo local o en un
directorio al que el equipo local pueda acceder.

• El siguiente comando ejecuta el Get-ServiceLog.ps1 script en los equipos
remotos denominados Server01 y Server02.

• Invoke-Command -ComputerName Server01,Server02 -FilePath `
• C:\Scripts\Get-ServiceLog.ps1

Errores

• Politicas de seguridad:

• Get-ExecutionPolicy,

• Para establecer nuevas reglas en este campo, se debe usar la siguiente
comando: (Es recomedable utilizar el principio de mínimo privilegio)

• Set-ExecutionPolicy RemoteSigned

• o

• Set-ExecutionPolicy Unrestricted

• y ya con este método se soluciona.

