
Medidas de cumplimiento de Windows

Compruebe que la cuenta de administrador está desactivada:
Get-LocalUser -Name Administrator

Compruebe que la cuenta de invitado está desactivada:
Get-LocalUser -Name Guest

Guarde la lista de usuarios locales en una variable y luego compruebe si tanto el
invitado como el administrador están desactivados:
$disabledUsers = Get-LocalUser | Where-Object Enabled -eq $False
($disabledUsers.Name -contains 'Administrator') -And
($disabledUsers.Name -contains 'Guest')

Enumerar los miembros de los grupos locales:
(Get-LocalGroupMember -Name Administrators | Measure-
Object).Count
(Get-LocalGroupMember -Name 'Power Users').Count

Compruebe que los servicios de Windows están instalados, habilitados y en
funcionamiento:
((Get-Service -Name '<service name>').Count -ge 1) -And
((Get-Service -Name '<service name>').Status -eq 'running') -And
((Get-Service -Name '<service name>').StartType -like 'Automatic*')

Información sobre el parche
Get-Hotfix

Patch-Velocity
Cuenta el número de parches aplicados por día

Get-Hotfix | Sort-Object InstalledOn -Descending

Patch-Age
La edad del parche de un sistema es el número de días desde que se aplicó el último parche:

$lastPatchDate = (Get-HotFix | Sort-Object InstalledOn -Descending | Select-
Object -First 1).InstalledOn
$lastPatchDate
(New-TimeSpan -Start $lastPatchDate -End (Get-Date)).TotalDays

Cumplimiento de parches en Windows

POWERSHELL PARA EL
CUMPLIMIENTO DE LA
EMPRESA Y LA NUBE

Por AJ Yawn
Cheat Sheet v1.0.0

SANS.ORG/CLOUD-SECURITY

SANS.ORG/SEC557

Cumplimiento de parches en distribuciones Linux
basadas en Debian Distribution

Cambiar el shell a Powershell Core
Pwsh

Los parches instalados por el gestor de paquetes Apt se registran:
/var/log/dkpg.log

Patch-Velocity
Cuenta el número de parches aplicados por día
Get-Content /var/log/dpkg.log* | Select-String “ install “ -NoEmphasis
Get-Content /var/log/dpkg.log* |

 Select-Strin g " install " -NoEm phasis |
 Out-File ./patches.txt -Encoding ascii
$lin es = Get- Content ./ patches.t xt
($lines | Where-Object { $_ -match "^[0-9]" }) -replace " .*$"

Patch-Age
La edad del parche de un sistema es el número de días desde que se aplicó el último parche:
$lastPatchDate = ($lines |
 Where-Object { $_ -match "^[0-9]" }) -replace " .*$" |
 Select-Object -last 1
$patchAge = (New-TimeSpan -Start (Get-Date -date $lastPatchDate) `

-End (Get-Date)).TotalDays
"Last Patch Date: $lastPatchDate"
"Patch Age: $patchAge"

Todos los comandos, a menos que se indique lo contrario, han sido
probados en el curso VMs SEC557: Continuous Automation for

Enterprise and Cloud Compliance usando PowerShell Core.

Plan de estudios de seguridad en la nube de SANS
Plan de estudios de liderazgo en ciberseguridad de SANS

Medidas de conformidad de AWS Revise los detalles de la exploración de vulnerabilidades de
Nessus

Medir la configuración del host VMWare

Asegúrese de que la versión actual del módulo AWS PowerShell está disponible
para su uso.
Install-Module -name AWSPowerShell.NetCore -Scope CurrentUser -
Force
Cargar el módulo AWS
Import-Module AWSPowerShell.NetCore

Autenticación en AWS
Set-AWSCredential -StoreAs <name of profile> -AccessKey
YourAccessKeyHere -SecretKey YourSecretKeyHere

CIS AWS Benchmark Control 1.4
(Get-IAMAccountSummary).AccountAccessKeysPresent

CIS AWS Benchmark Control 1.5
(Get-IAMAccountSummary).AccountMFAEnabled

CIS AWS Benchmark Control 1.8
Get-IAMAccountPasswordPolicy

CIS AWS Benchmark Control 1.13
Get-IAMUserList | ForEach-Object { Get-IAMAccessKey -UserName
$_.UserName }

CIS AWS Benchmark Control 1.15
(Get-IAMUserList | ForEach-Object {
 Get-IAMUserPolicies -UserName $_.UserName | Select-Object
PolicyName
 Get-IAMAttachedUserPolicies -UserName $_.UserName | Select-Object
PolicyName
}

CIS AWS Benchmark Control 3.1
Get-CTTrail

Recopilar información sobre el sistema anfitrión VMWare y su configuración
Get-VMHost -Server <name>

Validar la configuración común del hipervisor
(Get-VMHost).ExtensionData
Aproveche la propiedad Config de ExtensionData para obtener los
ajustes de configuración en profundidad (ejemplo de configuración
de resolución DNS a continuación)
(Get-VMHost).ExtensionData.Config.Network.DNSConfig Mide si
los ajustes de DNS están configurados correctamente:
$dnsservers = (Get-
VMHost).ExtensionData.Config.Network.DNSConfig | Select-Object
-ExpandProperty address
$dnsservers -contains '8.8.8.8'
$dnsservers -contains '8.8.4.4'
Valide el servidor o servidores NTP configurados en el host VMWare:
Get-VMHost -Server <name> | Get-VMHostNtpServer
Validar que el servicio NTP se está ejecutando y está configurado
para ejecutarse al inicio
Get-VMHost | Get-VMHostService | Where-Object {$_.key -eq
"ntpd"} | Select-Object VMHost, Label, Key, Policy, Running,
Required

Datos del parche
(Get-ESXCli -Server esxi1).software.vib.list()
Velocidad del parche
(Get-ESXCli -Server esxi1).software.vib.list() | Group-Object
InstallDate
Edad del parche
$lastPatchDate = ((Get-ESXCli -Server esxi1).software.vib.list() |
Sort-Object InstallDate -Descending | Select-Object -First
1).InstallDate
$patchAge = (New-TimeSpan -Start $lastPatchDate -End (Get-
Date)).TotalDays
$patchAge

Navegue y establezca la ubicación de los archivos de Nessus
Set-Location C:\user\Desktop\2021Scans

Ver qué archivos existen en el directorio
Get-ChildItem

Supongamos que hay muchos archivos Nessus para procesar,
guárdalos en una variable
$scanResults = Import-Csv -path (Get-ChildItem *.csv |
 Select-Object -ExpandProperty FullName)

Agrupar los resultados por Riesgo
$scanResults | Group-Object Risk
$scanResults | Group-Object Risk | Where-Object Name -eq
'Critical'

Identificar los hosts con mayor número de vulnerabilidades crítica
$scanResults |
 Where-Object Risk -eq 'critical' |
 Group-Object Host |
 Select-Object Count, Name |
 Where-Object Count -gt 5 |
 Sort-Object Count -Descending

Identificar el porcentaje de vulnerabilidades marcadas como críticas
$criticalCount =
 ($scanResults |
 Group-Object Risk |
 Where-Object Name -eq 'Critical'
).Count
$totalCount = ($scanResults | Where-Object Risk -ne 'None').Count
$criticalCount/$totalCount

